找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Smoothness Priors Analysis of Time Series; Genshiro Kitagawa,Will Gersch Book 1996 Springer Science+Business Media New York 1996 Likelihoo

[复制链接]
楼主: 加冕
发表于 2025-3-25 06:46:49 | 显示全部楼层
发表于 2025-3-25 07:30:15 | 显示全部楼层
发表于 2025-3-25 12:30:40 | 显示全部楼层
发表于 2025-3-25 19:39:01 | 显示全部楼层
Seasonal Adjustment,me series by the more general non-Gaussian state space modeling methods. In the more general non-Gaussian state space trend plus seasonal modeling, state estimation is achieved here in two different way, using the Gaussian sum and Monte Carlo filter methods.
发表于 2025-3-25 23:20:42 | 显示全部楼层
Modeling Scalar Nonstationary Covariance Time Series,ta. That topic is treated in Chapter 12.) Our primary application for the scalar nonstationary covariance modeling is the evolution with time of the power spectrum. The estimated TVAR model yields what we refer to as an “instantaneous power spectral density”.
发表于 2025-3-26 00:14:09 | 显示全部楼层
Modeling Multivariate Nonstationary Covariance Time Series,radigm. This idea is a consequence of an instantaneous response-orthogonal innovations representation of multivariate AR models. That permits the multivariate time series to be modeled one scalar AR model at-a-time.
发表于 2025-3-26 06:19:33 | 显示全部楼层
Quasi-Periodic Process Modeling,ynx data, (for example see Campbell and Walker 1977, Tong 1977, Bhansali 1979 and Priestly 1981), and the Wolfer sunspot series, (Morris 1977, Tong 1983). Such series are frequently modeled by AR, ARMA or AR plus sinusoidal models. However, none of these modeling methods are very satisfactory for th
发表于 2025-3-26 10:04:49 | 显示全部楼层
Book 1996aussian mixture distribution-two filter smoothing formula, and a Monte Carlo "particle-path tracing" method in which the distributions are approximated by many realizations. The methods are applicable for modeling time series with complex structures.
发表于 2025-3-26 12:49:27 | 显示全部楼层
发表于 2025-3-26 17:10:52 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-3 21:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表