找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Semantic Processing of Legal Texts; Where the Language o Enrico Francesconi,Simonetta Montemagni,Daniela Ti Book 2010 Springer-Verlag Berli

[复制链接]
查看: 9672|回复: 49
发表于 2025-3-21 16:22:06 | 显示全部楼层 |阅读模式
书目名称Semantic Processing of Legal Texts
副标题Where the Language o
编辑Enrico Francesconi,Simonetta Montemagni,Daniela Ti
视频video
概述High quality selected papers.Unique visibility.State of the art research
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Semantic Processing of Legal Texts; Where the Language o Enrico Francesconi,Simonetta Montemagni,Daniela Ti Book 2010 Springer-Verlag Berli
出版日期Book 2010
关键词argumentation; artificial intelligence; classification; corpus; information extraction; information retri
版次1
doihttps://doi.org/10.1007/978-3-642-12837-0
isbn_softcover978-3-642-12836-3
isbn_ebook978-3-642-12837-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2010
The information of publication is updating

书目名称Semantic Processing of Legal Texts影响因子(影响力)




书目名称Semantic Processing of Legal Texts影响因子(影响力)学科排名




书目名称Semantic Processing of Legal Texts网络公开度




书目名称Semantic Processing of Legal Texts网络公开度学科排名




书目名称Semantic Processing of Legal Texts被引频次




书目名称Semantic Processing of Legal Texts被引频次学科排名




书目名称Semantic Processing of Legal Texts年度引用




书目名称Semantic Processing of Legal Texts年度引用学科排名




书目名称Semantic Processing of Legal Texts读者反馈




书目名称Semantic Processing of Legal Texts读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:16:01 | 显示全部楼层
发表于 2025-3-22 03:06:44 | 显示全部楼层
Using Linguistic Information and Machine Learning Techniques to Identify Entities from Juridical Docniques, is described in this paper. In this approach, top-level legal concepts are identified and used for document classification using Support Vector Machines. Named entities, such as, locations, organizations, dates, and document references, are identified using semantic information from the outp
发表于 2025-3-22 06:20:19 | 显示全部楼层
发表于 2025-3-22 09:00:02 | 显示全部楼层
发表于 2025-3-22 15:27:50 | 显示全部楼层
发表于 2025-3-22 18:17:04 | 显示全部楼层
发表于 2025-3-22 23:04:31 | 显示全部楼层
发表于 2025-3-23 02:08:36 | 显示全部楼层
发表于 2025-3-23 06:17:46 | 显示全部楼层
Automated Classification of Norms in Sources of Lawisting systems use models that do not reflect the entire law, and simplify parts of the text. These models are difficult to validate, maintain and re-use. We propose to create an intermediate model that has an isomorphic representation of the structure of the original text. A first step towards auto
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-28 01:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表