找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Reinforcement Learning for Sequential Decision and Optimal Control; Shengbo Eben Li Textbook 2023 The Editor(s) (if applicable) and The Au

[复制链接]
楼主: 投降
发表于 2025-3-26 21:15:37 | 显示全部楼层
Model-Free Indirect RL: Temporal Difference,e interdisciplinary fields of neuroscience and psychology. A few physiological studies have found similarities to TD learning, for example, the firing rate of dopamine neurons in the brain appears to be proportional to a reward difference between the estimated reward and the actual reward. The large
发表于 2025-3-27 01:46:19 | 显示全部楼层
发表于 2025-3-27 07:59:12 | 显示全部楼层
Indirect RL with Function Approximation,t of indirect RL. This architecture has two cyclic components: one is called actor, and the other is called critic. The actor controls how the agent behaves with respect to a learned policy, while the critic evaluates the agent’s behavior by estimating its value function. Although many successful ap
发表于 2025-3-27 11:51:24 | 显示全部楼层
Direct RL with Policy Gradient,rect RL, however, especially with off-policy gradients, is the easiness of instability in the training process. The key idea to addressing this issue is to avoid adjusting the policy too fast at each step, and representative methods include trust region policy optimization (TRPO) and proximal policy
发表于 2025-3-27 14:32:41 | 显示全部楼层
Approximate Dynamic Programming, from Bellman’s principle. However, since the control policy must be approximated by a proper parameterized function, the selection of the parametric structure is strongly related to closed-loop optimality. For instance, a tracking problem has two kinds of policies: the first-point policy poses unne
发表于 2025-3-27 18:34:51 | 显示全部楼层
State Constraints and Safety Consideration,ic-scenery (ACS) is proposed to address the issue, whose elements include policy improvement (PIM), policy evaluation (PEV), and a newly added region identification (RID) step. By equipping an OCP with hard state constraint, the safety guarantee is equivalent to solving this constrained control task
发表于 2025-3-27 22:25:51 | 显示全部楼层
Deep Reinforcement Learning,by certain tricks described in this chapter, for example, implementing constrained policy update and separated target network for higher training stability, while utilizing double Q-functions or distributional return function to eliminate overestimation.
发表于 2025-3-28 02:46:38 | 显示全部楼层
发表于 2025-3-28 09:41:24 | 显示全部楼层
发表于 2025-3-28 13:23:51 | 显示全部楼层
Shengbo Eben Li Pädagogik; sie wird ausgesprochen kontrovers, teilweise auch, insbesondere in ihren erkenntnistheoretischen Facetten, polemisch geführt. Die zunächst in den USA geführte Diskussion hat längst auch die deutsche Erkenntnistheorie, Psychologie, Pädagogik und in jüngster Zeit verstärkt auch die Fachdid
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-21 10:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表