找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Reinforcement Learning for Optimal Feedback Control; A Lyapunov-Based App Rushikesh Kamalapurkar,Patrick Walters,Warren Dixo Book 2018 Spri

[复制链接]
查看: 30302|回复: 37
发表于 2025-3-21 17:35:21 | 显示全部楼层 |阅读模式
书目名称Reinforcement Learning for Optimal Feedback Control
副标题A Lyapunov-Based App
编辑Rushikesh Kamalapurkar,Patrick Walters,Warren Dixo
视频video
概述Illustrates the effectiveness of the developed methods with comparative simulations to leading off-line numerical methods.Presents theoretical development through engineering examples and hardware imp
丛书名称Communications and Control Engineering
图书封面Titlebook: Reinforcement Learning for Optimal Feedback Control; A Lyapunov-Based App Rushikesh Kamalapurkar,Patrick Walters,Warren Dixo Book 2018 Spri
描述.Reinforcement Learning for Optimal Feedback Control .develops model-based and data-driven reinforcement learning methods for solving optimal control problems in nonlinear deterministic dynamical systems. In order to achieve learning under uncertainty, data-driven methods for identifying system models in real-time are also developed. The book illustrates the advantages gained from the use of a model and the use of previous experience in the form of recorded data through simulations and experiments. The book’s focus on deterministic systems allows for an in-depth Lyapunov-based analysis of the performance of the methods described during the learning phase and during execution. .To yield an approximate optimal controller, the authors focus on theories and methods that fall under the umbrella of actor–critic methods for machine learning. They concentrate on establishing stability during the learning phase and the execution phase, and adaptive model-based and data-driven reinforcement learning, to assist readers in the learning process, which typically relies on instantaneous input-output measurements...This monograph provides academic researchers with backgrounds in diverse discipline
出版日期Book 2018
关键词Nonlinear Control; Lyapunov-based Control; Reinforcement Learning; Optimal Control; Dynamic Programming;
版次1
doihttps://doi.org/10.1007/978-3-319-78384-0
isbn_softcover978-3-030-08689-3
isbn_ebook978-3-319-78384-0Series ISSN 0178-5354 Series E-ISSN 2197-7119
issn_series 0178-5354
copyrightSpringer International Publishing AG 2018
The information of publication is updating

书目名称Reinforcement Learning for Optimal Feedback Control影响因子(影响力)




书目名称Reinforcement Learning for Optimal Feedback Control影响因子(影响力)学科排名




书目名称Reinforcement Learning for Optimal Feedback Control网络公开度




书目名称Reinforcement Learning for Optimal Feedback Control网络公开度学科排名




书目名称Reinforcement Learning for Optimal Feedback Control被引频次




书目名称Reinforcement Learning for Optimal Feedback Control被引频次学科排名




书目名称Reinforcement Learning for Optimal Feedback Control年度引用




书目名称Reinforcement Learning for Optimal Feedback Control年度引用学科排名




书目名称Reinforcement Learning for Optimal Feedback Control读者反馈




书目名称Reinforcement Learning for Optimal Feedback Control读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:09:28 | 显示全部楼层
发表于 2025-3-22 01:10:19 | 显示全部楼层
Computational Considerations,strate the utility of the StaF methodology for the maintenance of accurate function approximation as well as solving an infinite horizon optimal regulation problem. The results of the simulation indicate that fewer basis functions are required to guarantee stability and approximate optimality than a
发表于 2025-3-22 08:02:16 | 显示全部楼层
Book 2018 learning phase and the execution phase, and adaptive model-based and data-driven reinforcement learning, to assist readers in the learning process, which typically relies on instantaneous input-output measurements...This monograph provides academic researchers with backgrounds in diverse discipline
发表于 2025-3-22 11:03:11 | 显示全部楼层
发表于 2025-3-22 14:45:04 | 显示全部楼层
Mix von wirtschaftsnahen wie zivilgesellschaftlichen Steuerungsmechanismen auszeichnen. Abschließend wird auf die » Driver « der Ökonomisierung bei NPOs eingegangen und als Alternative hierzu eine Re-Orientierung in Richtung » Mehr Zivilgesellschaft wagen! « vorgeschlagen.
发表于 2025-3-22 19:27:09 | 显示全部楼层
发表于 2025-3-22 22:04:52 | 显示全部楼层
Rushikesh Kamalapurkar,Patrick Walters,Joel Rosenfeld,Warren Dixonrisch gesättigter Organisationstypen, dass sich Engagement und Engagementförderung in den Organisationen der Freien Wohlfahrtspflege überaus heterogen darstellen. Vor diesem Hintergrund wird der Frage nachgegangen, welche Formen des Managements beziehungsweise der Steuerung und Koordination sinnvoll
发表于 2025-3-23 01:50:15 | 显示全部楼层
发表于 2025-3-23 07:55:57 | 显示全部楼层
Rushikesh Kamalapurkar,Patrick Walters,Joel Rosenfeld,Warren Dixonndnissen als Selbstbeschreibung von Künstler*innen in Tätigkeiten der Offenen Settings vor. In diesen Selbstverständnissen ordnen sich die Künstler*innen oft gerade nicht dem einen oder anderen Feld – Kunst oder Soziales – zu. Auch das „differente Selbstverständnis [von] 1 Von 2014 bis 2017 erarbeit
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-18 22:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表