找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Regularity of the One-phase Free Boundaries; Bozhidar Velichkov Book‘‘‘‘‘‘‘‘ 2023 The Editor(s) (if applicable) and The Author(s) 2023 Ope

[复制链接]
楼主: 小巷
发表于 2025-3-23 11:46:12 | 显示全部楼层
Non-degeneracy of the Local Minimizers,In this section we prove the non-degeneracy of the solutions to the one-phase problem (.). Our main result is the following.
发表于 2025-3-23 16:34:20 | 显示全部楼层
Measure and Dimension of the Free Boundary,This chapter is dedicated to the measure theoretic structure of the free boundary . Ω.. The results presented here are mainly a consequence of the Lipschitz continuity and the non-degeneracy of the minimizer . (Theorem . and Proposition .).
发表于 2025-3-23 20:54:50 | 显示全部楼层
发表于 2025-3-23 22:20:56 | 显示全部楼层
发表于 2025-3-24 05:08:26 | 显示全部楼层
The Weiss Monotonicity Formula and Its Consequences,This chapter is dedicated to the monotonicity formula for the boundary adjusted energy introduced by Weiss in [.]. Precisely, for every Λ ≥ 0 and every . ∈ ..(..).
发表于 2025-3-24 09:53:36 | 显示全部楼层
Dimension of the Singular Set,In this chapter, we prove Theorem .. As in the original work of Weiss (see [.]), we will use the so-called Federer’s dimension reduction principle, which first appeared in [.].
发表于 2025-3-24 14:14:38 | 显示全部楼层
发表于 2025-3-24 15:42:52 | 显示全部楼层
An Epiperimetric Inequality Approach to the Regularity of the One-Phase Free Boundaries,Throughout this section, we will use the notation . where .. is the unit ball in ., . ≥ 2 and . ∈ ..(..).
发表于 2025-3-24 19:42:02 | 显示全部楼层
发表于 2025-3-25 03:02:51 | 显示全部楼层
978-3-031-13237-7The Editor(s) (if applicable) and The Author(s) 2023
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-8 11:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表