找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Regularity of the One-phase Free Boundaries; Bozhidar Velichkov Book‘‘‘‘‘‘‘‘ 2023 The Editor(s) (if applicable) and The Author(s) 2023 Ope

[复制链接]
查看: 11629|回复: 49
发表于 2025-3-21 20:01:34 | 显示全部楼层 |阅读模式
书目名称Regularity of the One-phase Free Boundaries
编辑Bozhidar Velichkov
视频video
概述This book is open access, which means that you have free and unlimited access.Winner of the 2019 Book Prize of the Unione Matematica Italiana.Freely available to all readers, this book is open access.
丛书名称Lecture Notes of the Unione Matematica Italiana
图书封面Titlebook: Regularity of the One-phase Free Boundaries;  Bozhidar Velichkov Book‘‘‘‘‘‘‘‘ 2023 The Editor(s) (if applicable) and The Author(s) 2023 Ope
描述This open access book is an introduction to the regularity theory for free boundary problems. The focus is on the one-phase Bernoulli problem, which is of particular interest as it deeply influenced the development of the modern free boundary regularity theory and is still an object of intensive research. .The exposition is organized around four main theorems, which are dedicated to the one-phase functional in its simplest form. Many of the methods and the techniques presented here are very recent and were developed in the context of different free boundary problems. We also give the detailed proofs of several classical results, which are based on some universal ideas and are recurrent in the free boundary, PDE and the geometric regularity theories..This book is aimed at graduate students and researches and is accessible to anyone with a moderate level of knowledge of elliptical PDEs..
出版日期Book‘‘‘‘‘‘‘‘ 2023
关键词Open Access; Free Boundary Problems; Regularity; One-phase Problem; Bernoulli Free Boundary Problem; Alt-
版次1
doihttps://doi.org/10.1007/978-3-031-13238-4
isbn_softcover978-3-031-13237-7
isbn_ebook978-3-031-13238-4Series ISSN 1862-9113 Series E-ISSN 1862-9121
issn_series 1862-9113
copyrightThe Editor(s) (if applicable) and The Author(s) 2023
The information of publication is updating

书目名称Regularity of the One-phase Free Boundaries影响因子(影响力)




书目名称Regularity of the One-phase Free Boundaries影响因子(影响力)学科排名




书目名称Regularity of the One-phase Free Boundaries网络公开度




书目名称Regularity of the One-phase Free Boundaries网络公开度学科排名




书目名称Regularity of the One-phase Free Boundaries被引频次




书目名称Regularity of the One-phase Free Boundaries被引频次学科排名




书目名称Regularity of the One-phase Free Boundaries年度引用




书目名称Regularity of the One-phase Free Boundaries年度引用学科排名




书目名称Regularity of the One-phase Free Boundaries读者反馈




书目名称Regularity of the One-phase Free Boundaries读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:14:34 | 显示全部楼层
发表于 2025-3-22 03:29:59 | 显示全部楼层
发表于 2025-3-22 08:33:01 | 显示全部楼层
发表于 2025-3-22 10:32:46 | 显示全部楼层
la terapia medico-nucleare, tali particelle possono essere suddivise in α (nuclei di elio) e β. (elettroni in senso classico); a loro volta gli elettroni comprendono una sottocategoria particolare, gli elettroni di Auger, che possiedono alcune caratteristiche che li distinguono da tutti gli altri. I
发表于 2025-3-22 16:46:57 | 显示全部楼层
Bozhidar Velichkove della materia trattata e per le applicazioni, il testo può essere utilmente adottato anche nei Corsi di Laurea specialistica in Bioingegneria..978-88-470-2332-1978-88-470-2333-8Series ISSN 2038-5714 Series E-ISSN 2532-3318
发表于 2025-3-22 18:20:48 | 显示全部楼层
发表于 2025-3-22 22:27:42 | 显示全部楼层
发表于 2025-3-23 03:52:21 | 显示全部楼层
Existence of Solutions, Qualitative Properties and Examples,In this section, we prove that local minimizers of the functional . do exist (Proposition .) and we give several important examples of local minimizers that can be computed explicitly (Proposition ., Lemmas . and .).
发表于 2025-3-23 05:53:36 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-8 13:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表