找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Number Theory Related to Fermat’s Last Theorem; Proceedings of the c Neal Koblitz Conference proceedings 1982 Springer Science+Business Med

[复制链接]
查看: 45989|回复: 60
发表于 2025-3-21 16:03:57 | 显示全部楼层 |阅读模式
书目名称Number Theory Related to Fermat’s Last Theorem
副标题Proceedings of the c
编辑Neal Koblitz
视频video
丛书名称Progress in Mathematics
图书封面Titlebook: Number Theory Related to Fermat’s Last Theorem; Proceedings of the c Neal Koblitz Conference proceedings 1982 Springer Science+Business Med
出版日期Conference proceedings 1982
关键词boundary element method; number theory; theorem
版次1
doihttps://doi.org/10.1007/978-1-4899-6699-5
isbn_softcover978-0-8176-3104-8
isbn_ebook978-1-4899-6699-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Science+Business Media New York 1982
The information of publication is updating

书目名称Number Theory Related to Fermat’s Last Theorem影响因子(影响力)




书目名称Number Theory Related to Fermat’s Last Theorem影响因子(影响力)学科排名




书目名称Number Theory Related to Fermat’s Last Theorem网络公开度




书目名称Number Theory Related to Fermat’s Last Theorem网络公开度学科排名




书目名称Number Theory Related to Fermat’s Last Theorem被引频次




书目名称Number Theory Related to Fermat’s Last Theorem被引频次学科排名




书目名称Number Theory Related to Fermat’s Last Theorem年度引用




书目名称Number Theory Related to Fermat’s Last Theorem年度引用学科排名




书目名称Number Theory Related to Fermat’s Last Theorem读者反馈




书目名称Number Theory Related to Fermat’s Last Theorem读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:28:23 | 显示全部楼层
Geometry of Fermat Varieties, automorphisms acts on a Fermat variety. The other is the existence of the so-called “inductive structure” of Fermat varieties of a fixed degree. By combining these, we can deal with various geometric questions concerning Fermat varieties and their products (or varieties closely related to them) suc
发表于 2025-3-22 03:09:11 | 显示全部楼层
发表于 2025-3-22 05:54:11 | 显示全部楼层
The Fermat Equation and Transcendence Theory,een shown, in papers of Stewart and of Inkeri and van der Poorten, that if |x - y| is bounded by some fixed number then the equation x. + y. = z. has only finitely many solutions in positive integers x,y,z,n(> 2) and, in principle, these can all be effectively determined. This would seem to be the f
发表于 2025-3-22 12:19:05 | 显示全部楼层
Values of L-Functions of Jacobi-Sum Hecke Characters of Abelian Fields,on is done only up to algebraic numbers, and we assume that the Hecke character is in the “good range.” We may make a more refined Statement (the Γ-hypothesis), which actually predicts the values up to rational numbers, and which has been verified in the totally real case ([B]) and in the case of im
发表于 2025-3-22 15:32:53 | 显示全部楼层
On the Conjecture of Birch and Swinnerton-Dyer for Elliptic Curves with Complex Multiplication,in the half-plane Re(s) > 3/2 (2.4). Whenever L(E,s) has an analytic continuation to the entire complex plane, we can consider the first term in its Taylor expansion at s= 1; we write L(E,s) ~ c(E) (s − 1). as s → 1, where r(E) is a nonnegative integer and c(E) is a nonzero real number. Birch and Sw
发表于 2025-3-22 20:23:14 | 显示全部楼层
Mordell-Weil Groups of Elliptic Curves Over Cyclotomic Fields,orem asserts that if F is a finite extension of . then E(F) is finitely generated. Our main result shows that for a large class of elliptic curves over ., and for certain infinite abelian extensions F of ., the group E(F) remains finitely generated. it should be noted that the torsion subgroup of E(
发表于 2025-3-22 22:10:16 | 显示全部楼层
,Iwasawa’s Theory and p-ADIC L-Functions for Imaginary Quadratic Fields,is to provide some evidence for a “two-variable main conjecture” that has been suggested at least in special cases by R. Yager in [12]. We will first describe various “main conjectures” that have been proposed over the years in a more general and unified way.
发表于 2025-3-23 03:18:33 | 显示全部楼层
Dorian Goldfeld,Jeffrey Hoffstein,Samuel James Patterson
发表于 2025-3-23 08:48:39 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 01:17
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表