找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Number Theory Related to Fermat’s Last Theorem; Proceedings of the c Neal Koblitz Conference proceedings 1982 Springer Science+Business Med

[复制链接]
楼主: Destruct
发表于 2025-3-25 05:56:40 | 显示全部楼层
On Automorphic Functions of Half-Integral Weight with Applications to Elliptic Curves,The theory of automorphic forms of 1/2-integral weight has attracted a considerable amount of attention in recent years. The striking difference between the case of integral and 1/2-integral weight is the fact that the Fourier coefficients of 1/2-integral weight forms are expressible in terms of the values of L-functions.
发表于 2025-3-25 08:04:56 | 显示全部楼层
,Remarks on Equations Related to Fermat’s Last Theorem,For odd k, define θ(k) as the least value of s such that.has a non-trivial Solution over the integers. Fermat’s Last Theorem impl ies that θ(k) > 3 for odd k > 3.
发表于 2025-3-25 13:33:19 | 显示全部楼层
The Cubic Thue Equation,Fix.a cubic form with non-zero discriminant; and let
发表于 2025-3-25 16:42:14 | 显示全部楼层
发表于 2025-3-25 21:24:52 | 显示全部楼层
发表于 2025-3-26 02:41:35 | 显示全部楼层
https://doi.org/10.1007/978-1-4899-6699-5boundary element method; number theory; theorem
发表于 2025-3-26 05:08:58 | 显示全部楼层
发表于 2025-3-26 09:18:50 | 显示全部楼层
Some Remarks on Weierstrass Points,on S, different from 0, which vanishes at p to order at least g. The set of Weierstrass points on S is nonempty and finite; indeed, each Weierstrass point is assigned a positive integer called the Weierstrass weight, and then one has the result that the sum of the weights of all Weierstrass points on S is (g−l)g(g+l).
发表于 2025-3-26 15:59:25 | 显示全部楼层
发表于 2025-3-26 20:13:29 | 显示全部楼层
978-0-8176-3104-8Springer Science+Business Media New York 1982
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-23 13:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表