找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: New Trends in Nonlinear Control Theory; Proceedings of an In J. Descusse,Michel Fliess,D. Leborgne Conference proceedings 1989 Springer-Ver

[复制链接]
查看: 41315|回复: 58
发表于 2025-3-21 19:55:19 | 显示全部楼层 |阅读模式
书目名称New Trends in Nonlinear Control Theory
副标题Proceedings of an In
编辑J. Descusse,Michel Fliess,D. Leborgne
视频video
丛书名称Lecture Notes in Control and Information Sciences
图书封面Titlebook: New Trends in Nonlinear Control Theory; Proceedings of an In J. Descusse,Michel Fliess,D. Leborgne Conference proceedings 1989 Springer-Ver
描述This conference on nonlinear control theory was organized within a special "Nonlinear Year" of the French "Centre National de la Recherche Scientifique". This volume is a collection of invited papers giving an overview of new trends in research all over the world. It was the aim of the editors to bring together theoretical contributions by pure mathematicians and more applied communications dedicated to robotics, electrical engines, biology and computer science.
出版日期Conference proceedings 1989
关键词Algebra; Nonlinear system; Trend; communication; computer; control; control theory; filtering; modeling; nonl
版次1
doihttps://doi.org/10.1007/BFb0043011
isbn_softcover978-3-540-51075-8
isbn_ebook978-3-540-46143-2Series ISSN 0170-8643 Series E-ISSN 1610-7411
issn_series 0170-8643
copyrightSpringer-Verlag Berlin Heidelberg 1989
The information of publication is updating

书目名称New Trends in Nonlinear Control Theory影响因子(影响力)




书目名称New Trends in Nonlinear Control Theory影响因子(影响力)学科排名




书目名称New Trends in Nonlinear Control Theory网络公开度




书目名称New Trends in Nonlinear Control Theory网络公开度学科排名




书目名称New Trends in Nonlinear Control Theory被引频次




书目名称New Trends in Nonlinear Control Theory被引频次学科排名




书目名称New Trends in Nonlinear Control Theory年度引用




书目名称New Trends in Nonlinear Control Theory年度引用学科排名




书目名称New Trends in Nonlinear Control Theory读者反馈




书目名称New Trends in Nonlinear Control Theory读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:58:28 | 显示全部楼层
Bernard Bonnardile the surface using the set of tiles and following the rules. As proven by Berger (The Undecidability of the Domino Problem. Ph.D. thesis, Harvard University, 1964) in the 1960s, this problem is undecidable in general. When formulated in terms of tilings of the discrete plane . by unit tiles with
发表于 2025-3-22 01:01:27 | 显示全部楼层
Krzysztof Tchoneal case, it is well known that the expansion in a given integer basis of a rational number is ultimately periodic, which implies that its complexity function is bounded. More generally, the expansion of an algebraic irrational number in a given integer basis is supposed to be normal, whereas real n
发表于 2025-3-22 04:36:40 | 显示全部楼层
A. J. van der Schafteal case, it is well known that the expansion in a given integer basis of a rational number is ultimately periodic, which implies that its complexity function is bounded. More generally, the expansion of an algebraic irrational number in a given integer basis is supposed to be normal, whereas real n
发表于 2025-3-22 10:43:44 | 显示全部楼层
F. Lamnabhi-Lagarrigue,P. E. Crouch,I. Ighneiwaeal case, it is well known that the expansion in a given integer basis of a rational number is ultimately periodic, which implies that its complexity function is bounded. More generally, the expansion of an algebraic irrational number in a given integer basis is supposed to be normal, whereas real n
发表于 2025-3-22 16:27:41 | 显示全部楼层
R. El Assoudi,J. P. Gauthiereal case, it is well known that the expansion in a given integer basis of a rational number is ultimately periodic, which implies that its complexity function is bounded. More generally, the expansion of an algebraic irrational number in a given integer basis is supposed to be normal, whereas real n
发表于 2025-3-22 17:20:57 | 显示全部楼层
J. W. Grizzle,A. Isidorieal case, it is well known that the expansion in a given integer basis of a rational number is ultimately periodic, which implies that its complexity function is bounded. More generally, the expansion of an algebraic irrational number in a given integer basis is supposed to be normal, whereas real n
发表于 2025-3-23 00:16:43 | 显示全部楼层
M. D. Di Benedettog größer werdenden Beeinträchtigung unserer Lebensbedingungen und Lebensqualität gewinnt der Umweltschutz immer mehr an Bedeutung. Große Konzentrationen von Luftverschmutzungen bewirken eine Schädigung von Menschen, Tieren, Pflanzen und Bauwerken. Aus diesem Grund entwickelt sich ein anderes, ein ök
发表于 2025-3-23 01:44:16 | 显示全部楼层
发表于 2025-3-23 08:17:47 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 08:02
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表