找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Neural-Symbolic Learning and Reasoning; 18th International C Tarek R. Besold,Artur d’Avila Garcez,Benedikt Wagn Conference proceedings 2024

[复制链接]
楼主: 和尚吃肉片
发表于 2025-3-28 16:13:17 | 显示全部楼层
发表于 2025-3-28 21:00:33 | 显示全部楼层
发表于 2025-3-29 01:26:32 | 显示全部楼层
Olga Mashkova,Fernando Zhapa-Camacho,Robert Hoehndorfhe specific computational problems.Focuses on a new language.The goal of this new edition is the same as for the first edition ”to address the fault detection and isolation topics from a computational perspective“, by covering the same important aspects, namely, (1) providing a completely general th
发表于 2025-3-29 05:29:53 | 显示全部楼层
Context Helps: Integrating Context Information with Videos in a Graph-Based HAR Frameworke-of-the-art (SoTA) models rely heavily on domain specific supervised fine-tuning of visual features, and even with this data- and compute-intensive fine-tuning, overall performance can still be limited. We argue that the next generation of HAR models could benefit from explicit neuro-symbolic mecha
发表于 2025-3-29 08:48:40 | 显示全部楼层
发表于 2025-3-29 13:55:51 | 显示全部楼层
Variable Assignment Invariant Neural Networks for Learning Logic Programssymbolic algorithms, but they are unable to deal with noise or generalize to unobserved transitions. Rule extraction based neural network methods suffer from overfitting, while more general implementation that categorize rules suffer from combinatorial explosion. In this paper, we introduce a techni
发表于 2025-3-29 18:25:40 | 显示全部楼层
ViPro: Enabling and Controlling Video Prediction for Complex Dynamical Scenarios Using Procedural Knh of data-driven models. On the basis of new challenging scenarios we show that state-of-the-art video predictors struggle in complex dynamical settings, and highlight that the introduction of prior process knowledge makes their learning problem feasible. Our approach results in the learning of a sy
发表于 2025-3-29 22:17:10 | 显示全部楼层
发表于 2025-3-30 00:16:11 | 显示全部楼层
发表于 2025-3-30 05:51:26 | 显示全部楼层
On the Use of Neurosymbolic AI for Defending Against Cyber Attacksectionist and symbolic AI are currently being used to support such detection and response. In this paper, we make the case for combining them using neurosymbolic AI. We identify a set of challenges when using AI today and propose a set of neurosymbolic use cases we believe are both interesting resea
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 08:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表