找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Neural-Symbolic Learning and Reasoning; 18th International C Tarek R. Besold,Artur d’Avila Garcez,Benedikt Wagn Conference proceedings 2024

[复制链接]
楼主: 和尚吃肉片
发表于 2025-3-30 12:06:05 | 显示全部楼层
发表于 2025-3-30 14:28:42 | 显示全部楼层
发表于 2025-3-30 19:42:29 | 显示全部楼层
发表于 2025-3-31 00:27:02 | 显示全部楼层
发表于 2025-3-31 03:01:06 | 显示全部楼层
ULLER: A Unified Language for Learning and Reasoningnow are a wide variety of NeSy frameworks, each with its own specific language for expressing background knowledge and how to relate it to neural networks. This heterogeneity hinders accessibility for newcomers and makes comparing different NeSy frameworks challenging. We propose a unified language
发表于 2025-3-31 06:18:49 | 显示全部楼层
Disentangling Visual Priors: Unsupervised Learning of Scene Interpretations with Compositional Autoe transforms, and other higher-level structures. We propose a neurosymbolic architecture that uses a domain-specific language to capture selected priors of image formation, including object shape, appearance, categorization, and geometric transforms. We express template programs in that language and
发表于 2025-3-31 11:17:27 | 显示全部楼层
发表于 2025-3-31 15:18:10 | 显示全部楼层
Enhancing Machine Learning Predictions Through Knowledge Graph Embeddingsby insufficient training data and poor data quality, with particularly severe consequences in critical areas such as medical diagnosis prediction. Our hypothesis is that enhancing ML pipelines with semantic information such as those available in knowledge graphs (KG) can address these challenges and
发表于 2025-3-31 18:45:27 | 显示全部楼层
Terminating Differentiable Tree Expertsor Product Representations. We investigate the architecture and propose two key components. We first remove a series of different transformer layers that are used in every step by introducing a mixture of experts. This results in a Differentiable Tree Experts model with a constant number of paramete
发表于 2025-4-1 00:27:16 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 20:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表