找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Neural Information Processing; 29th International C Mohammad Tanveer,Sonali Agarwal,Adam Jatowt Conference proceedings 2023 The Editor(s) (

[复制链接]
查看: 48723|回复: 60
发表于 2025-3-21 20:05:22 | 显示全部楼层 |阅读模式
书目名称Neural Information Processing
副标题29th International C
编辑Mohammad Tanveer,Sonali Agarwal,Adam Jatowt
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Neural Information Processing; 29th International C Mohammad Tanveer,Sonali Agarwal,Adam Jatowt Conference proceedings 2023 The Editor(s) (
描述The three-volume set LNCS 13623, 13624, and 13625 constitutes the refereed proceedings of the 29th International Conference on Neural Information Processing, ICONIP 2022, held as a virtual event, November 22–26, 2022. .The 146 papers presented in the proceedings set were carefully reviewed and selected from 810 submissions. They were organized in topical sections as follows: Theory and Algorithms; Cognitive Neurosciences; Human Centered Computing; and Applications..The ICONIP conference aims to provide a leading international forum for researchers, scientists, and industry professionals who are working in neuroscience, neural networks, deep learning, and related fields to share their new ideas, progress, and achievements..
出版日期Conference proceedings 2023
关键词pattern recognition; signal processing; neural networks; deep learning; image processing; computing metho
版次1
doihttps://doi.org/10.1007/978-3-031-30111-7
isbn_softcover978-3-031-30110-0
isbn_ebook978-3-031-30111-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Neural Information Processing影响因子(影响力)




书目名称Neural Information Processing影响因子(影响力)学科排名




书目名称Neural Information Processing网络公开度




书目名称Neural Information Processing网络公开度学科排名




书目名称Neural Information Processing被引频次




书目名称Neural Information Processing被引频次学科排名




书目名称Neural Information Processing年度引用




书目名称Neural Information Processing年度引用学科排名




书目名称Neural Information Processing读者反馈




书目名称Neural Information Processing读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:42:08 | 显示全部楼层
发表于 2025-3-22 02:50:45 | 显示全部楼层
Ru Peng,Nankai Lin,Yi Fang,Shengyi Jiang,Tianyong Hao,Boyu Chen,Junbo Zhaorial case studies, they capture the wealth of knowledge that eight companies have gathered during the introduction of the software product line engineering approach in their daily practice. After reading this b978-3-642-09061-5978-3-540-71437-8
发表于 2025-3-22 08:33:06 | 显示全部楼层
Yihong Zhuang,Changxing Jing,Senlin Cai,Lexing Huang,Yue Huang,Xiaotong Tu,Xinghao Dingg, Software Demonstrations and Training, The Market / Your Customers, or Organizational Maturity..The book helps product people to maximize their impact and effectiveness. Whether you’re a seasoned practitioner978-3-030-19873-2978-3-030-19871-8Series ISSN 2192-8096 Series E-ISSN 2192-810X
发表于 2025-3-22 09:30:04 | 显示全部楼层
Zhen Gao,Xiaowen Chen,Jingning Xu,Rongjie Yu,Jiaqi Zong ensure they are delivered throughout the entire lifecycle. Next it presents the main concepts and techniques of continuous quality control, discussing the quality control loop and its main techniques such as r978-3-642-44190-5978-3-642-38571-1
发表于 2025-3-22 16:33:26 | 显示全部楼层
发表于 2025-3-22 20:52:30 | 显示全部楼层
发表于 2025-3-22 22:12:44 | 显示全部楼层
发表于 2025-3-23 02:49:56 | 显示全部楼层
Spatial and Temporal Guidance for Semi-supervised Video Object Segmentationto focus on long-term object-level feature from the first frame. The proposed spatial and temporal guidance effectively alleviates mismatching and makes the model more robust and efficient. Experiments on YouTube-VOS and DAVIS benchmarks show that our method outperforms previous state-of-the-art met
发表于 2025-3-23 05:52:03 | 显示全部楼层
Unsupervised Anomaly Segmentation for Brain Lesions Using Dual Semantic-Manifold Reconstructionns not only on the semantic layout but also the image appearance. In this way a Dual Semantic-Manifold Reconstruction (DSMR) is trained and then used to detect the anomalies accurately. Experiments reveal that the proposed DSMR approach exceeds the state-of-the-art performance on the benchmark datas
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 20:38
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表