找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Neural Information Processing; 24th International C Derong Liu,Shengli Xie,El-Sayed M. El-Alfy Conference proceedings 2017 Springer Interna

[复制链接]
楼主: 美丽动人
发表于 2025-3-23 10:54:27 | 显示全部楼层
Hybrid RVM Algorithm Based on the Prediction Variancee the accuracy. Test results show that RVM with the biased wavelet kernel is able to get increased prediction precision considering data features and the predicted variance is an efficient metric to construct the hybrid algorithm.
发表于 2025-3-23 13:51:49 | 显示全部楼层
A Self-adaptive Growing Method for Training Compact RBF Networkse number of nodes reaches a limit. Then the network is further optimized with a supervised fine-tuning method. Experimental results indicate that the proposed method could achieve better performances than traditional algorithms when training same sized RBF networks.
发表于 2025-3-23 18:38:39 | 显示全部楼层
发表于 2025-3-23 22:11:34 | 显示全部楼层
发表于 2025-3-24 03:30:53 | 显示全部楼层
Relation Classification via CNN, Segmented Max-pooling, and SDP-BLSTMtwo-layer feed-forward network for classification. Experiments on the SemEval-2010 Task 8 dataset show that our model achieves competitive performance when compared with several start-of-the-art models.
发表于 2025-3-24 08:38:05 | 显示全部楼层
发表于 2025-3-24 13:47:52 | 显示全部楼层
Conference proceedings 2017 Intelligence, Neural Data Analysis, Biomedical Engineering, Emotion and Bayesian Networks, Data Mining, Time-Series Analysis, Social Networks, Bioinformatics, Information Security and Social Cognition, Robotics and Control, Pattern Recognition, Neuromorphic Hardware and Speech Processing. .
发表于 2025-3-24 15:30:25 | 显示全部楼层
发表于 2025-3-24 21:09:47 | 显示全部楼层
发表于 2025-3-25 01:28:03 | 显示全部楼层
Binary Stochastic Representations for Large Multi-class Classifications, but also learning to map inputs to binary codes. This approach called . keeps the sublinear inference complexity but do not need any . tuning. Experimental results on different datasets show the effectiveness of the approach w.r.t. baseline methods.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 06:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表