找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Neural Information Processing; 24th International C Derong Liu,Shengli Xie,El-Sayed M. El-Alfy Conference proceedings 2017 Springer Interna

[复制链接]
楼主: 美丽动人
发表于 2025-3-28 18:26:12 | 显示全部楼层
Improving Generalization Capability of Extreme Learning Machine with Synthetic Instances Generation of ELM with Synthetic Instances Generation (SIGELM). We focus on optimizing the output-layer weights via adding informative synthetic instances to the training dataset at each learning step. In order to get the required synthetic instances, a neighborhood is determined for each high-uncertainty tra
发表于 2025-3-28 21:55:57 | 显示全部楼层
Adaptive , , Regularization: Oracle Property and Applications sample size. Other than the case of the number of covariates is smaller than the sample size, in this paper, we prove that under appropriate conditions, these adaptive . estimators possess the oracle property in the case that the number of covariates is much larger than the sample size. We present
发表于 2025-3-29 01:03:17 | 显示全部楼层
发表于 2025-3-29 03:37:54 | 显示全部楼层
发表于 2025-3-29 11:07:18 | 显示全部楼层
发表于 2025-3-29 12:43:38 | 显示全部楼层
Hybrid RVM Algorithm Based on the Prediction Variance solve nonlinear problems by using kernel functions. Biased wavelets are localized in time and infrequency but, unlike wavelets, have adjustable nonzero mean. The proposed hybrid algorithm employs a family of biased wavelets to construct the kernel functions of RVM, which makes the kernel of RVM mor
发表于 2025-3-29 16:55:25 | 显示全部楼层
发表于 2025-3-29 22:17:24 | 显示全部楼层
A Self-adaptive Growing Method for Training Compact RBF Networksrtional to the number of nodes in its hidden layer, while there is also a positive correlation between the number of nodes and the predication accuracy. In this paper, we propose a new training algorithm for RBF networks in order to construct high accuracy networks with as few nodes as possible. The
发表于 2025-3-30 02:53:16 | 显示全部楼层
Incremental Extreme Learning Machine via Fast Random Search Methodo avoid this problem, enhanced random search based incremental extreme learning machine (EI-ELM) is proposed. However, we find that the EI-ELM’s training time is too long. In addition, EI-ELM can only add hidden nodes one by one. This paper proposes a fast method for EI-ELM (referred to as FI-ELM).
发表于 2025-3-30 07:52:00 | 显示全部楼层
Learning of Phase-Amplitude-Type Complex-Valued Neural Networks with Application to Signal Coherenceation functions, which can be applied to deal with coherent signals effectively. The performance of the proposed L-BFGS algorithm is compared with traditional complex-valued stochastic gradient descent method on the tasks of wave-related signal processing with various degrees of coherence. The exper
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 06:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表