用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable

[复制链接]
楼主: Halloween
发表于 2025-3-23 09:51:45 | 显示全部楼层
发表于 2025-3-23 16:10:20 | 显示全部楼层
Knowledge Prompting with Contrastive Learning for Unsupervised CommonsenseQAs on stacking large-scale models or extracting knowledge from external sources. However, these methods suffer from either the unstable quality of knowledge or the deficiency in the model’s flexibility. In this paper, we propose a .nowledge .rompting with .ontrastive .earning (KPCL) model to address
发表于 2025-3-23 20:17:48 | 显示全部楼层
发表于 2025-3-24 01:54:13 | 显示全部楼层
发表于 2025-3-24 04:30:13 | 显示全部楼层
发表于 2025-3-24 07:14:13 | 显示全部楼层
Efficient Prompt Tuning for Vision and Language Models method for different downstream tasks is prompt tuning, which fixes the parameters of the visual language model and adjusts only prompt parameters in the process of adapting the downstream tasks, using the knowledge learned by the visual language model during pre-training to solve the problems in t
发表于 2025-3-24 11:33:23 | 显示全部楼层
发表于 2025-3-24 16:15:19 | 显示全部楼层
发表于 2025-3-24 20:00:24 | 显示全部楼层
PLKA-MVSNet: Parallel Multi-view Stereo with Large Kernel Convolution Attention, particularly the inaccurate depth estimation in challenging areas such as low-texture regions, weak lighting conditions, and non-Lambertian surfaces. We ascribe this problem to the insufficient performance of the feature extractor and the information loss caused by the MVS pipeline transmission, a
发表于 2025-3-25 01:05:54 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 22:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表