找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable

[复制链接]
查看: 49079|回复: 58
发表于 2025-3-21 16:10:22 | 显示全部楼层 |阅读模式
书目名称Neural Information Processing
副标题30th International C
编辑Biao Luo,Long Cheng,Chaojie Li
视频video
丛书名称Communications in Computer and Information Science
图书封面Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable
描述The nine-volume set constitutes the refereed proceedings of the 30th International Conference on Neural Information Processing, ICONIP 2023, held in Changsha, China, in November 2023.  .The 1274 papers presented in the proceedings set were carefully reviewed and selected from 652 submissions. .The ICONIP conference aims to provide a leading international forum for researchers, scientists, and industry professionals who are working in neuroscience, neural networks, deep learning, and related fields to share their new ideas, progress, and achievements..
出版日期Conference proceedings 2024
关键词Bioinformatics; Brain-machine interface; Computational finance; Computational intelligence; Control and
版次1
doihttps://doi.org/10.1007/978-981-99-8145-8
isbn_softcover978-981-99-8144-1
isbn_ebook978-981-99-8145-8Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

书目名称Neural Information Processing影响因子(影响力)




书目名称Neural Information Processing影响因子(影响力)学科排名




书目名称Neural Information Processing网络公开度




书目名称Neural Information Processing网络公开度学科排名




书目名称Neural Information Processing被引频次




书目名称Neural Information Processing被引频次学科排名




书目名称Neural Information Processing年度引用




书目名称Neural Information Processing年度引用学科排名




书目名称Neural Information Processing读者反馈




书目名称Neural Information Processing读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:16:18 | 显示全部楼层
发表于 2025-3-22 03:39:49 | 显示全部楼层
An Ontology for Industrial Intelligent Model Library and Its Distributed Computing Applicationta collected from the manufacturing system, several instances are created and stored in the data layer. In addition, we present a prototype distributed computing application. The result suggests that the ontology can optimize the management of industrial models and achieve interoperability between models.
发表于 2025-3-22 08:35:27 | 显示全部楼层
From Incompleteness to Unity: A Framework for Multi-view Clustering with Missing Values with affinity-based MVC methods. This approach circumvents the uncertainties associated with inaccurate imputations, enhancing clustering performance. Comprehensive experiments show that our method outperforms traditional imputation-based techniques, yielding superior clustering results across various levels of missing data.
发表于 2025-3-22 11:55:58 | 显示全部楼层
发表于 2025-3-22 13:17:28 | 显示全部楼层
1865-0929 held in Changsha, China, in November 2023.  .The 1274 papers presented in the proceedings set were carefully reviewed and selected from 652 submissions. .The ICONIP conference aims to provide a leading international forum for researchers, scientists, and industry professionals who are working in ne
发表于 2025-3-22 18:09:08 | 显示全部楼层
发表于 2025-3-22 23:16:23 | 显示全部楼层
发表于 2025-3-23 05:05:08 | 显示全部楼层
Multi-intent Description of Keyword Expansion for Code Searchther expand the query. To evaluate the effectiveness of MDKE-CS in code search tasks, we conducted comparative experimental analyses using two baseline models, DeepCS and UNIF, as well as WordNet and BM25 extension methods. Our experimental results demonstrate that MDKE-CS outperforms the baseline models in terms of R@1, R@5, R@10, and MRR values.
发表于 2025-3-23 09:37:49 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 12:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表