找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Near-Rings and Near-Fields; Proceedings of the C Yuen Fong,Carl Maxson,Leon Wyk Conference proceedings 2001 Springer Science+Business Media

[复制链接]
楼主: 伤害
发表于 2025-3-28 17:13:39 | 显示全部楼层
发表于 2025-3-28 19:48:56 | 显示全部楼层
发表于 2025-3-29 02:20:52 | 显示全部楼层
On Modules of Homogeneous Mappings and let . be the ring of all R-endomorphisms of .. Of course .(.) is contained in .(.) and, as many examples show, ([2], [.], [4], [5]), in general .(.) is larger then .(.)..In this paper we try “to measure a distance” between .(.) and .(.) under some additional assumptions on . and G.
发表于 2025-3-29 03:20:33 | 显示全部楼层
发表于 2025-3-29 11:13:33 | 显示全部楼层
When is a centralizer near-ring isomorphic to a matrix near-ring? Part 2ubnear-ring of the centralizer near-ring ..(..). We find conditions such that .(..(.);.) is a proper subset of ..(..). Assuming both . and . are abelian we find conditions under which .(..(.);.) equals ..(..).
发表于 2025-3-29 12:47:21 | 显示全部楼层
http://image.papertrans.cn/n/image/662314.jpg
发表于 2025-3-29 19:09:54 | 显示全部楼层
https://doi.org/10.1007/978-94-010-0954-6Abelian group; Algebraic structure; Group theory; algebra; combinatorics; computer; geometry; ring theory
发表于 2025-3-29 19:53:24 | 显示全部楼层
发表于 2025-3-30 02:27:04 | 显示全部楼层
Some Results on Derivations in NearringsLet . denote a 3-prime near-ring. We prove that if 2. ≠ {0} and .. and .. are nonzero derivations on ., then .... cannot act as a derivation on a nonzero additively-closed semigroup ideal. We then establish some results involving conditions of form .(.).(.) = 0, where . is a derivation on . and . is an endomorphism of ..
发表于 2025-3-30 05:40:38 | 显示全部楼层
A Note on Pseudo-Distributivity in Group Near-RingsIt is shown that the group near-ring constructed from a pseudo-distributive near-ring and an arbitrary group is a ring.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 13:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表