找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Metric Learning; Aurélien Bellet,Amaury Habrard,Marc Sebban Book 2015 Springer Nature Switzerland AG 2015

[复制链接]
楼主: Daidzein
发表于 2025-3-25 04:40:23 | 显示全部楼层
发表于 2025-3-25 08:45:40 | 显示全部楼层
Introduction,ining techniques. Prominent examples include nearest-neighbor classification [Cover and Hart, 1967], data clustering [Lloyd, 1982], kernel methods [Schölkopf and Smola, 2001] and many information retrieval methods [Manning et al., 2008].
发表于 2025-3-25 11:44:08 | 显示全部楼层
Metric Learning for Structured Data,d Perona, 2005, Salton et al., 1975]. In this case, metric learning can simply be performed on the feature vector representation, but this strategy can imply a significant loss of structural information.
发表于 2025-3-25 18:51:51 | 显示全部楼层
发表于 2025-3-25 21:50:45 | 显示全部楼层
发表于 2025-3-26 00:19:59 | 显示全部楼层
Book 2015 appropriately measure such similarities for a given task is crucial to the performance of many machine learning, pattern recognition and data mining methods. This book is devoted to metric learning, a set of techniques to automatically learn similarity and distance functions from data that has attr
发表于 2025-3-26 06:44:46 | 显示全部楼层
Linear Metric Learning, devoted to learning more flexible linear similarity functions (Section 4.2). Finally, Section 4.3 discusses how to scale-up these methods to large amounts of training data (both in number of samples and number of features).
发表于 2025-3-26 08:54:37 | 显示全部楼层
Nonlinear and Local Metric Learning,ce. In this chapter, we present the two main lines of research in nonlinear metric learning: learn a nonlinear form of metric (Section 5.1) or multiple linear metrics (Section 5.2), as illustrated in Figure 5.1.
发表于 2025-3-26 13:36:41 | 显示全部楼层
Generalization Guarantees for Metric Learning,on the training sample). This deviation is typically a function of the number of training examples, and some notion of complexity of the model such as the VC dimension [Vapnik and Chervonenkis, 1971], the fat-shattering dimension [Alon et al., 1997] or the Rademacher complexity [Bartlett and Mendelson, 2002, Koltchinskii, 2001].
发表于 2025-3-26 16:56:09 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 14:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表