找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Metric Learning; Aurélien Bellet,Amaury Habrard,Marc Sebban Book 2015 Springer Nature Switzerland AG 2015

[复制链接]
查看: 12828|回复: 42
发表于 2025-3-21 17:59:17 | 显示全部楼层 |阅读模式
书目名称Metric Learning
编辑Aurélien Bellet,Amaury Habrard,Marc Sebban
视频video
丛书名称Synthesis Lectures on Artificial Intelligence and Machine Learning
图书封面Titlebook: Metric Learning;  Aurélien Bellet,Amaury Habrard,Marc Sebban Book 2015 Springer Nature Switzerland AG 2015
描述Similarity between objects plays an important role in both human cognitive processes and artificial systems for recognition and categorization. How to appropriately measure such similarities for a given task is crucial to the performance of many machine learning, pattern recognition and data mining methods. This book is devoted to metric learning, a set of techniques to automatically learn similarity and distance functions from data that has attracted a lot of interest in machine learning and related fields in the past ten years. In this book, we provide a thorough review of the metric learning literature that covers algorithms, theory and applications for both numerical and structured data. We first introduce relevant definitions and classic metric functions, as well as examples of their use in machine learning and data mining. We then review a wide range of metric learning algorithms, starting with the simple setting of linear distance and similarity learning. We show how one may scale-up these methods to very large amounts of training data. To go beyond the linear case, we discuss methods that learn nonlinear metrics or multiple linear metrics throughout the feature space, and r
出版日期Book 2015
版次1
doihttps://doi.org/10.1007/978-3-031-01572-4
isbn_softcover978-3-031-00444-5
isbn_ebook978-3-031-01572-4Series ISSN 1939-4608 Series E-ISSN 1939-4616
issn_series 1939-4608
copyrightSpringer Nature Switzerland AG 2015
The information of publication is updating

书目名称Metric Learning影响因子(影响力)




书目名称Metric Learning影响因子(影响力)学科排名




书目名称Metric Learning网络公开度




书目名称Metric Learning网络公开度学科排名




书目名称Metric Learning被引频次




书目名称Metric Learning被引频次学科排名




书目名称Metric Learning年度引用




书目名称Metric Learning年度引用学科排名




书目名称Metric Learning读者反馈




书目名称Metric Learning读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:19:56 | 显示全部楼层
978-3-031-00444-5Springer Nature Switzerland AG 2015
发表于 2025-3-22 00:27:00 | 显示全部楼层
Metric Learning978-3-031-01572-4Series ISSN 1939-4608 Series E-ISSN 1939-4616
发表于 2025-3-22 05:05:54 | 显示全部楼层
Metrics,This chapter introduces some background knowledge on metrics and their applications. Section 2.1 provides definitions for distance, similarity and kernel functions. Some standard metrics are presented in Section 2.2. We conclude this chapter by briefly discussing the use of metrics in machine learning and data mining in Section 2.3.
发表于 2025-3-22 10:11:35 | 显示全部楼层
发表于 2025-3-22 14:59:12 | 显示全部楼层
发表于 2025-3-22 17:39:36 | 显示全部楼层
Aurélien Bellet,Amaury Habrard,Marc Sebbaneitung.Includes supplementary material: .Dieses Buch bietet eine grundlegende Einführung in das Rechnungswesen für Kulturbetriebe. Für Kulturinstitutionen wird der Umgang mit dem betrieblichen Rechnungswesen aus mehreren Gründen wichtiger: für eine solide Datenbasis, um staatliche Förderungen zu erh
发表于 2025-3-23 00:36:03 | 显示全部楼层
Introduction,or conceptual representations. Essentially, when facing stimuli or situations similar to what we have encountered before, we expect similar responses and take similar actions. This has led psychologists to develop a variety of cognitive theories and mathematical models of similarity [Ashby and Perri
发表于 2025-3-23 02:15:20 | 显示全部楼层
Properties of Metric Learning Algorithms,scalability, optimality guarantees and ability to perform dimensionality reduction (Figure 3.1). When deciding which method to apply, emphasis should be placed on these properties, depending on the characteristics of the problem at hand. They provide the basis for a taxonomy of all the algorithms co
发表于 2025-3-23 08:50:57 | 显示全部楼层
Linear Metric Learning,ient learning thanks to their simple form. The chapter is organized as follows. In the first part, we focus on Malahanobis distance learning (Section 4.1), where the learned metric satisfies the distance axioms. Then, motivated by psychological evidence and computational benefits, the second part is
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 14:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表