找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Markov Random Field Modeling in Image Analysis; Stan Z. Li Book 20012nd edition Springer Japan 2001 Excel.Markov Random Field.Markov model

[复制链接]
查看: 40984|回复: 41
发表于 2025-3-21 20:01:17 | 显示全部楼层 |阅读模式
书目名称Markov Random Field Modeling in Image Analysis
编辑Stan Z. Li
视频video
概述Valuable reference for researchers.Covers deeply a broad range of Markov Random Field Theory
丛书名称Computer Science Workbench
图书封面Titlebook: Markov Random Field Modeling in Image Analysis;  Stan Z. Li Book 20012nd edition Springer Japan 2001 Excel.Markov Random Field.Markov model
描述Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. The book covers the following parts essential to the subject: introduction to fundamental theories, formulations of MRF vision models, MRF parameter estimation, and optimization algorithms. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This second edition includes the most important progress in Markov modeling in image analysis in recent years such as Markov modeling of images with "macro" patterns (e.g. the FRAME model), Markov chain Monte Carlo (MCMC) methods, reversible jump MCMC. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses
出版日期Book 20012nd edition
关键词Excel; Markov Random Field; Markov model; Optical flow; Ringe; algorithms; calculus; computer vision; image
版次2
doihttps://doi.org/10.1007/978-4-431-67044-5
isbn_ebook978-4-431-67044-5Series ISSN 1431-1488
issn_series 1431-1488
copyrightSpringer Japan 2001
The information of publication is updating

书目名称Markov Random Field Modeling in Image Analysis影响因子(影响力)




书目名称Markov Random Field Modeling in Image Analysis影响因子(影响力)学科排名




书目名称Markov Random Field Modeling in Image Analysis网络公开度




书目名称Markov Random Field Modeling in Image Analysis网络公开度学科排名




书目名称Markov Random Field Modeling in Image Analysis被引频次




书目名称Markov Random Field Modeling in Image Analysis被引频次学科排名




书目名称Markov Random Field Modeling in Image Analysis年度引用




书目名称Markov Random Field Modeling in Image Analysis年度引用学科排名




书目名称Markov Random Field Modeling in Image Analysis读者反馈




书目名称Markov Random Field Modeling in Image Analysis读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:12:31 | 显示全部楼层
发表于 2025-3-22 03:38:10 | 显示全部楼层
发表于 2025-3-22 05:12:14 | 显示全部楼层
,Minimization — Local Methods,ry diffi­cult in vision problems due to the complexity caused by interactions between labels. Therefore, optimal solutions are usually computed by using some it­erative search techniques. This chapter describes techniques for finding local minima and discusses related issues.
发表于 2025-3-22 10:27:11 | 显示全部楼层
1431-1488 s for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. The book covers t
发表于 2025-3-22 13:04:41 | 显示全部楼层
发表于 2025-3-22 21:08:25 | 显示全部楼层
Discontinuity-Adaptivity Model and Robust Estimation,previous chapter. This chapter provides a comparative study (Li 1995a) of the two kinds of models based on the results about the DA model and presents an algorithm (Li 1996b) to improve the stability of the robust M-estimator to the initialization.
发表于 2025-3-22 22:11:11 | 显示全部楼层
发表于 2025-3-23 02:32:18 | 显示全部楼层
Introduction, the optimal solution to a vision problem and how to find the optimal solution. The reason for defining the solution in an . sense is due to various uncertainties in vision processes. It may be difficult to find the perfect solution, so we usually look for an optimal one in the sense that an objective in which constraints are encoded is optimized.
发表于 2025-3-23 08:12:39 | 显示全部楼层
,Minimization — Global Methods,l if the energy function contains many local minima. Whereas methods for local minimization are quite mature with commercial software on market, the study of global minimization is still young. There are no efficient algorithms which guarantee to find globally minimal solutions as are there for local minimization.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 07:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表