找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning in VLSI Computer-Aided Design; Ibrahim (Abe) M. Elfadel,Duane S. Boning,Xin Li Book 2019 Springer Nature Switzerland AG 2

[复制链接]
查看: 8129|回复: 51
发表于 2025-3-21 17:04:08 | 显示全部楼层 |阅读模式
书目名称Machine Learning in VLSI Computer-Aided Design
编辑Ibrahim (Abe) M. Elfadel,Duane S. Boning,Xin Li
视频video
概述Provides up-to-date information on machine learning in VLSI CAD for device modeling, layout verifications, yield prediction, post-silicon validation, and reliability.Discusses the use of machine learn
图书封面Titlebook: Machine Learning in VLSI Computer-Aided Design;  Ibrahim (Abe) M. Elfadel,Duane S. Boning,Xin Li Book 2019 Springer Nature Switzerland AG 2
描述.This book provides readers with an up-to-date account of the use of machine learning frameworks, methodologies, algorithms and techniques in the context of computer-aided design (CAD) for very-large-scale integrated circuits (VLSI). Coverage includes the various machine learning methods used in lithography, physical design, yield prediction, post-silicon performance analysis, reliability and failure analysis, power and thermal analysis, analog design, logic synthesis, verification, and neuromorphic design. .Provides up-to-date information on machine learning in VLSI CAD for device modeling, layout verifications, yield prediction, post-silicon validation, and reliability;.Discusses the use of machine learning techniques in the context of analog and digital synthesis;.Demonstrates how to formulate VLSI CAD objectives as machine learning problems and provides a comprehensive treatment of their efficient solutions;.Discusses the tradeoff between the cost of collecting data and prediction accuracy and provides a methodology for using prior data to reduce cost of data collection in the design, testing and validation of both analog and digital VLSI designs...From the Foreword. .As the se
出版日期Book 2019
关键词VLSI Design; VLSI Verification; VLSI Testing; VLSI Analog Circuits; CMOS VLSI Design
版次1
doihttps://doi.org/10.1007/978-3-030-04666-8
isbn_ebook978-3-030-04666-8
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Machine Learning in VLSI Computer-Aided Design影响因子(影响力)




书目名称Machine Learning in VLSI Computer-Aided Design影响因子(影响力)学科排名




书目名称Machine Learning in VLSI Computer-Aided Design网络公开度




书目名称Machine Learning in VLSI Computer-Aided Design网络公开度学科排名




书目名称Machine Learning in VLSI Computer-Aided Design被引频次




书目名称Machine Learning in VLSI Computer-Aided Design被引频次学科排名




书目名称Machine Learning in VLSI Computer-Aided Design年度引用




书目名称Machine Learning in VLSI Computer-Aided Design年度引用学科排名




书目名称Machine Learning in VLSI Computer-Aided Design读者反馈




书目名称Machine Learning in VLSI Computer-Aided Design读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:54:07 | 显示全部楼层
Ibrahim (Abe) M. Elfadel,Duane S. Boning,Xin LiProvides up-to-date information on machine learning in VLSI CAD for device modeling, layout verifications, yield prediction, post-silicon validation, and reliability.Discusses the use of machine learn
发表于 2025-3-22 02:20:30 | 显示全部楼层
发表于 2025-3-22 07:08:51 | 显示全部楼层
Springer Nature Switzerland AG 2019
发表于 2025-3-22 11:46:16 | 显示全部楼层
A Preliminary Taxonomy for Machine Learning in VLSI CAD,ception. The purpose of this book is to bring to the interested reader a cross-section of the connections between existing and emerging machine learning methods and VLSI computer aided design (CAD). In this brief introduction, we begin with a high-level taxonomy of machine learning methods. We then
发表于 2025-3-22 16:41:08 | 显示全部楼层
发表于 2025-3-22 17:33:58 | 显示全部楼层
发表于 2025-3-23 00:11:42 | 显示全部楼层
Machine Learning in Physical Verification, Mask Synthesis, and Physical Design as physical design, mask synthesis, and physical verification are critical to guarantee fast design closure and manufacturability. Recent advances in machine learning provide various new opportunities and approaches to tackle these challenges. This chapter will discuss several applications of machi
发表于 2025-3-23 03:26:54 | 显示全部楼层
发表于 2025-3-23 06:30:06 | 显示全部楼层
Machine Learning Approaches for IC Manufacturing Yield Enhancementinterest in machine learning and data mining techniques to improve yield to take advantage of this increasing volume of data. In this chapter, we introduce machine learning yield models for integrated circuit (IC) manufacturing yield enhancement. Challenges in this area include class imbalance due t
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-13 11:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表