找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning Methods; Hang Li Textbook 2024 Tsinghua University Press 2024 Machine Learning.Statistical Learning.Supervised Learning.U

[复制链接]
查看: 10102|回复: 57
发表于 2025-3-21 16:19:35 | 显示全部楼层 |阅读模式
书目名称Machine Learning Methods
编辑Hang Li
视频video
概述Provides introduction to principle machine learning methods, covering both supervised and unsupervised learning methods.Presents clear descriptions, detailed proofs, and concrete examples using concis
图书封面Titlebook: Machine Learning Methods;  Hang Li Textbook 2024 Tsinghua University Press 2024 Machine Learning.Statistical Learning.Supervised Learning.U
描述This book provides a comprehensive and systematic introduction to the principal machine learning methods, covering both supervised and unsupervised learning methods. It discusses essential methods of classification and regression in supervised learning, such as decision trees, perceptrons, support vector machines, maximum entropy models, logistic regression models and multiclass classification, as well as methods applied in supervised learning, like the hidden Markov model and conditional random fields. In the context of unsupervised learning, it examines clustering and other problems as well as methods such as singular value decomposition, principal component analysis and latent semantic analysis.. As a fundamental book on machine learning, it addresses the needs of researchers and students who apply machine learning as an important tool in their research, especially those in fields such as information retrieval, natural language processing and text data mining. In order to understand the concepts and methods discussed, readers are expected to have an elementary knowledge of advanced mathematics, linear algebra and probability statistics. The detailed explanations of basic princip
出版日期Textbook 2024
关键词Machine Learning; Statistical Learning; Supervised Learning; Unsupervised Learning; Classification; Regre
版次1
doihttps://doi.org/10.1007/978-981-99-3917-6
isbn_softcover978-981-99-3919-0
isbn_ebook978-981-99-3917-6
copyrightTsinghua University Press 2024
The information of publication is updating

书目名称Machine Learning Methods影响因子(影响力)




书目名称Machine Learning Methods影响因子(影响力)学科排名




书目名称Machine Learning Methods网络公开度




书目名称Machine Learning Methods网络公开度学科排名




书目名称Machine Learning Methods被引频次




书目名称Machine Learning Methods被引频次学科排名




书目名称Machine Learning Methods年度引用




书目名称Machine Learning Methods年度引用学科排名




书目名称Machine Learning Methods读者反馈




书目名称Machine Learning Methods读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:28:48 | 显示全部楼层
Hang LiProvides introduction to principle machine learning methods, covering both supervised and unsupervised learning methods.Presents clear descriptions, detailed proofs, and concrete examples using concis
发表于 2025-3-22 02:47:55 | 显示全部楼层
发表于 2025-3-22 08:38:57 | 显示全部楼层
发表于 2025-3-22 10:39:54 | 显示全部楼层
Perceptron,This chapter first introduces the perceptron model, then describes the learning strategy of the perceptron, especially the loss function, and finally presents perceptron learning algorithms, including the primitive form and the dual form, and proves the algorithm’s convergence.
发表于 2025-3-22 16:08:52 | 显示全部楼层
-Nearest Neighbor,This chapter first describes the .-NN algorithm, then discusses the model and three basic elements of .-NN, and finally describes an implementation method of .-NN—the .-tree, focusing on algorithms for constructing and searching the .-tree.
发表于 2025-3-22 18:57:28 | 显示全部楼层
发表于 2025-3-22 22:21:57 | 显示全部楼层
Decision Tree,This chapter first introduces the basic concept of the decision tree, then introduces feature selection, tree-generation and tree-pruning through ID3 and C4.5 algorithms, and finally introduces the CART algorithm.
发表于 2025-3-23 02:02:09 | 显示全部楼层
Logistic Regression and Maximum Entropy Model,This chapter first introduces the logistic regression model, then the maximum entropy model, and finally describes the learning algorithms for logistic regression and maximum entropy models, including the improved iterative scaling algorithm and the Quasi-Newton method.
发表于 2025-3-23 06:00:44 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-13 01:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表