找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning Methods; Hang Li Textbook 2024 Tsinghua University Press 2024 Machine Learning.Statistical Learning.Supervised Learning.U

[复制链接]
楼主: formation
发表于 2025-3-23 12:17:02 | 显示全部楼层
Hidden Markov Model,This chapter first introduces the basic concepts of the Hidden Markov Model, and then describes the probability calculation algorithms, learning algorithms, and prediction algorithms of the HMM, respectively.
发表于 2025-3-23 17:42:40 | 显示全部楼层
发表于 2025-3-23 19:12:56 | 显示全部楼层
Summary of Supervised Learning Methods,This chapter summarizes the characteristics of ten supervised learning methods, including the perceptron, .-Nearest-Neighbor (.-NN), the Naïve Bayes method, the decision tree, logistic regression and maximum entropy model, Support Vector Machine (SVM), Boosting, the EM algorithm, Hidden Markov Model (HMM), and Conditional random field (CRF).
发表于 2025-3-24 01:26:33 | 显示全部楼层
发表于 2025-3-24 04:13:03 | 显示全部楼层
发表于 2025-3-24 09:13:56 | 显示全部楼层
Singular Value Decomposition,This chapter introduces the matrix factorization method—Singular Value Decomposition (SVD), including the definition and fundamental theorem of matrix SVD, its compact and truncated form, geometric interpretation, and main properties, its optimization algorithms.
发表于 2025-3-24 12:40:21 | 显示全部楼层
发表于 2025-3-24 15:08:25 | 显示全部楼层
Latent Semantic Analysis,This chapter introduces an unsupervised learning method—Latent Semantic Analysis (LSA), first describing the word vector space model and the topic vector space model, followed by the SVD algorithm for LSA, and the Non-negative matrix factorization (NMF) algorithm.
发表于 2025-3-24 20:14:19 | 显示全部楼层
发表于 2025-3-25 01:04:53 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-13 05:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表