找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Linear Operators in Hilbert Spaces; Joachim Weidmann Textbook 1980 Springer-Verlag New York Inc. 1980 Hilbert space.Hilbertscher Raum.Koor

[复制链接]
楼主: Aggrief
发表于 2025-3-25 07:03:53 | 显示全部楼层
Hilbert spaces,. ∈ . with ∥.. − .∥→0; since from ∥ .. − .∥→0 and ∥ .. − g∥→0 it follows that ∥. - g∥ ⩽ ∥ . − ..∥ + ∥ .. − g∥→0, thus . = .. We say that the sequence (..) . to . and call . the . of the sequence (..). In symbols we write . = lim.. or ..→. as .→∞. If no confusion is possible, we shall occasionally ab
发表于 2025-3-25 09:12:24 | 显示全部楼层
Orthogonality, + .∥. = ∥ . ∥. + ∥ . ∥.; this formula often is referred to as the .. An element . ∈ . is said to be . to the subset . of . (in symbols . ⊥ .), if .⊥. for all .∈.. Two subsets . and . of . are said to be orthogonal (in symbols .⊥ .) if <., .> = 0 for all . ∈ ., . ∈ .. If . is a subset of ., then the
发表于 2025-3-25 13:12:59 | 显示全部楼层
发表于 2025-3-25 19:36:16 | 显示全部楼层
发表于 2025-3-25 21:06:16 | 显示全部楼层
Self-adjoint extensions of symmetric operators,int extensions. The question of whether all (or which) symmetric operators have self-adjoint extensions could not be answered there. The key to our studies was the fact that λ — . was continuously invertible for some λ ∈ ℝ; however, this is not always the case. In this chapter we develop the ., whic
发表于 2025-3-26 01:14:54 | 显示全部楼层
发表于 2025-3-26 06:26:30 | 显示全部楼层
发表于 2025-3-26 10:14:17 | 显示全部楼层
Special classes of linear operators,Let .. and .. be Hilbert spaces. An operator T from .. into .. is said to be of . (of .) if R(.) is finite-dimensional (.-dimensional).
发表于 2025-3-26 15:57:17 | 显示全部楼层
The spectral theory of self-adjoint and normal operators,We studied the spectrum of compact operators thoroughly in Section 6.1. For compact normal operators the results obtained there may be sharpened.
发表于 2025-3-26 18:38:53 | 显示全部楼层
Perturbation theory for self-adjoint operators,Here we will deal almost exclusively with the perturbation theory for self-adjoint and essentially self-adjoint operators. Essentially two questions arise:
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 19:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表