找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Linear Operators in Hilbert Spaces; Joachim Weidmann Textbook 1980 Springer-Verlag New York Inc. 1980 Hilbert space.Hilbertscher Raum.Koor

[复制链接]
楼主: Aggrief
发表于 2025-3-26 22:36:58 | 显示全部楼层
发表于 2025-3-27 04:07:48 | 显示全部楼层
Scattering theory,The theory of . provides a useful means of studying the absolutely continuous spectrum. We wish to present this theory briefly in what follows.
发表于 2025-3-27 05:21:23 | 显示全部楼层
Hilbert spaces,. ∈ . with ∥.. − .∥→0; since from ∥ .. − .∥→0 and ∥ .. − g∥→0 it follows that ∥. - g∥ ⩽ ∥ . − ..∥ + ∥ .. − g∥→0, thus . = .. We say that the sequence (..) . to . and call . the . of the sequence (..). In symbols we write . = lim.. or ..→. as .→∞. If no confusion is possible, we shall occasionally abbreviate these by writing . = lim .., or ..→.
发表于 2025-3-27 09:26:47 | 显示全部楼层
Orthogonality, + .∥. = ∥ . ∥. + ∥ . ∥.; this formula often is referred to as the .. An element . ∈ . is said to be . to the subset . of . (in symbols . ⊥ .), if .⊥. for all .∈.. Two subsets . and . of . are said to be orthogonal (in symbols .⊥ .) if <., .> = 0 for all . ∈ ., . ∈ .. If . is a subset of ., then the set .. = {. ∈ .: .⊥.} is called the . of ..
发表于 2025-3-27 14:30:46 | 显示全部楼层
Graduate Texts in Mathematicshttp://image.papertrans.cn/l/image/586363.jpg
发表于 2025-3-27 19:13:29 | 显示全部楼层
发表于 2025-3-28 00:38:20 | 显示全部楼层
Linear Operators in Hilbert Spaces978-1-4612-6027-1Series ISSN 0072-5285 Series E-ISSN 2197-5612
发表于 2025-3-28 02:42:00 | 显示全部楼层
发表于 2025-3-28 09:46:38 | 显示全部楼层
Linear operators and their adjoints,ut . .., . ... If .., = .. = ., then . is called an .. A linear operator from . into . is called a .. The range of an operator . from .., into .. is a subspace of ... An operator is injective if and only if .=0 implies . = 0.
发表于 2025-3-28 11:34:02 | 显示全部楼层
Closed linear operators,graph .(.) (cf. Section 4.4) in H. × H. is closed. An operator . is said to be . if . is a graph. From the proof of Theorem 4.15 we know that there exists then a uniquely determined operator . such that . is closed and is called the . of ..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 18:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表