找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Lectures in Abstract Algebra; II. Linear Algebra Nathan Jacobson Textbook 1953 The Editor(s) (if applicable) and The Author(s) 1953 Calcula

[复制链接]
楼主: 法官所用
发表于 2025-3-25 07:24:38 | 显示全部楼层
The Theory of a Single Linear Transformation,paces into so-called cyclic subspaces relative to a given linear transformation. By choosing appropriate bases in these spaces we obtain certain canonical matrices for the transformation. These results yield necessary and sufficient conditions for similarity of matrices. Following Krull we shall der
发表于 2025-3-25 11:13:48 | 显示全部楼层
Sets of Linear Transformations,y of these notions belongs more properly to the so-called theory of representations of rings and is beyond the scope of the present volume. An introduction to these notions will serve to put into better perspective the results of the preceding chapter. We shall also be able to extend some of these r
发表于 2025-3-25 12:13:42 | 显示全部楼层
Bilinear Forms, vector space R and. is in a right vector space R′. The values of .(.,.) are assumed to belong to Δ, and the functions of one variable ..(.) = .(.,.) and ..(.) = .(.,.) obtained by fixing the other variable are linear. Of particular interest are the non-degenerate bilinear forms. These determine 1–1
发表于 2025-3-25 18:37:38 | 显示全部楼层
发表于 2025-3-25 20:55:06 | 显示全部楼层
发表于 2025-3-26 00:41:21 | 显示全部楼层
发表于 2025-3-26 07:11:31 | 显示全部楼层
978-1-4684-7055-0The Editor(s) (if applicable) and The Author(s) 1953
发表于 2025-3-26 10:49:44 | 显示全部楼层
发表于 2025-3-26 14:25:24 | 显示全部楼层
Graduate Texts in Mathematicshttp://image.papertrans.cn/l/image/583440.jpg
发表于 2025-3-26 18:50:06 | 显示全部楼层
Linear Transformations,elation between linear transformations and matrices is discussed. Also we define rank and nullity for arbitrary linear transformations. Finally we study a special type of linear transformation called a projection, and we establish a connection between transformations of this type and direct decompositions of the vector space.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 21:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表