用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Knowledge Graphs and Semantic Web; Second Iberoamerican Boris Villazón-Terrazas,Fernando Ortiz-Rodríguez,S Conference proceedings 2020 Spri

[复制链接]
查看: 10008|回复: 51
发表于 2025-3-21 20:03:20 | 显示全部楼层 |阅读模式
书目名称Knowledge Graphs and Semantic Web
副标题Second Iberoamerican
编辑Boris Villazón-Terrazas,Fernando Ortiz-Rodríguez,S
视频video
丛书名称Communications in Computer and Information Science
图书封面Titlebook: Knowledge Graphs and Semantic Web; Second Iberoamerican Boris Villazón-Terrazas,Fernando Ortiz-Rodríguez,S Conference proceedings 2020 Spri
描述.This book constitutes the thoroughly refereed proceedings of the Second Iberoamerican Conference, KGSWC 2020, held in Mérida, Mexico, in November 2020. Due to the COVID-19 pandemic the conference was held online. .The 15 papers presented were carefully reviewed and selected from 45 submissions. The papers cover research and practices in several fields of AI, such as knowledge representation and reasoning, natural language processing/text mining, machine/deep learning, semantic web, and knowledge graphs..
出版日期Conference proceedings 2020
关键词artificial intelligence; computational linguistics; computer networks; computer security; computer syste
版次1
doihttps://doi.org/10.1007/978-3-030-65384-2
isbn_softcover978-3-030-65383-5
isbn_ebook978-3-030-65384-2Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Knowledge Graphs and Semantic Web影响因子(影响力)




书目名称Knowledge Graphs and Semantic Web影响因子(影响力)学科排名




书目名称Knowledge Graphs and Semantic Web网络公开度




书目名称Knowledge Graphs and Semantic Web网络公开度学科排名




书目名称Knowledge Graphs and Semantic Web被引频次




书目名称Knowledge Graphs and Semantic Web被引频次学科排名




书目名称Knowledge Graphs and Semantic Web年度引用




书目名称Knowledge Graphs and Semantic Web年度引用学科排名




书目名称Knowledge Graphs and Semantic Web读者反馈




书目名称Knowledge Graphs and Semantic Web读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:02:04 | 显示全部楼层
发表于 2025-3-22 04:23:19 | 显示全部楼层
发表于 2025-3-22 06:41:06 | 显示全部楼层
发表于 2025-3-22 11:58:51 | 显示全部楼层
Malware Detection Using Machine Learning,tection for the same, we present a machine-learning based technique for predicting Windows PE files as benign or malignant based on fifty-seven of their attributes. We have used the Brazilian Malware dataset, which had around 1,00,000 samples and 57 labels. We have made seven models, and have achiev
发表于 2025-3-22 15:50:56 | 显示全部楼层
发表于 2025-3-22 17:42:42 | 显示全部楼层
发表于 2025-3-22 23:56:31 | 显示全部楼层
Relation Classification: How Well Do Neural Network Approaches Work?,pre-defined set of abstract relation labels. A benchmark data set for this task is the SemEval-2010 Task 8 data set. Neural network approaches are currently the methods that give state-of-art results on a wide range of NLP problems. There is also the claim that the models trained on one task carry o
发表于 2025-3-23 04:28:49 | 显示全部楼层
发表于 2025-3-23 09:28:31 | 显示全部楼层
An Ontological Model for the Failure Detection in Power Electric Systems,ific aspects of the electricity grid and do not consider the necessary elements for the representation of a fault detection system based on Smart Grid trends. In this paper, we describe the development process of EPFDO, an ontology composed of a network of ontologies that allow the representation of
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 20:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表