找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Krebs und Alternativmedizin II; Walter Felix Jungi,Hans-Jörg Senn Conference proceedings 1990 Springer-Verlag Berlin Heidelberg 1990 Alter

[复制链接]
楼主: 代表
发表于 2025-3-23 10:58:26 | 显示全部楼层
发表于 2025-3-23 15:27:54 | 显示全部楼层
发表于 2025-3-23 20:07:23 | 显示全部楼层
R. Obrist,D. P. Berger,J. P. Obrechtrspective there is reason to suspect that alternate formulations of the finite element method may be possible in which the weighted integration technique is dispensed with in favor of an explicit definition of the subdomains of integration. The flexibility of existing finite element algorithms may b
发表于 2025-3-23 23:41:51 | 显示全部楼层
发表于 2025-3-24 03:26:51 | 显示全部楼层
P. Heusseralois group of E over F form an F-basis of E (i. e. , a normal basis of E over F; w is called free in E over F). For finite fields, the Nor­ mal Basis Theorem has first been proved by K. Hensel [19] in 1888. Since normal bases in finite fields in the last two decades have been proved to be very usef
发表于 2025-3-24 07:24:39 | 显示全部楼层
T. Hajto,K. Hostanska,E. Kovacs,H. J. Gabiusbutions for some short Reed-Muller codes. Then with probability at least 1 − ., the algorithm corrects.independently and uniformly distributed errors..For the .(2, 9) code for example, the algorithm corrects up to 122 errors with probability at least 0.99 whereas half the minimum distance is 64. Und
发表于 2025-3-24 11:29:09 | 显示全部楼层
发表于 2025-3-24 15:27:04 | 显示全部楼层
发表于 2025-3-24 21:20:53 | 显示全部楼层
J. P. Obrecht questions, but the results contained in this book have not till now been collected under one cover. In the present work the author has attempted to point out new links among different areas of the theory of finite fields. It contains many very important results which previously could be found only
发表于 2025-3-25 01:01:25 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-8 00:38
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表