找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: IoT and AI in Agriculture; Self- sufficiency in Tofael Ahamed Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive li

[复制链接]
楼主: 风俗习惯
发表于 2025-3-23 18:56:32 | 显示全部楼层
Arkar Minn,Tofael Ahamedtscheiders in Verbindung gebracht werden kann. Abschließend stellt dieses Kapitel dar, welche irrationalen Verhaltensmuster sich durch die Wahrscheinlichkeitsgewichtefunktion erklären lassen. Hierzu gehört beispielsweise die Tendenz, zu viele kleine Versicherungen abzuschließen. Ebenso lässt sich di
发表于 2025-3-24 01:18:59 | 显示全部楼层
Linhuan Zhang,Tofael Ahamed,Yan Zhang,Pengbo Gao,Tomohiro Takigawat wird. Ebenso können die Erkenntnisse genutzt werden, um das eigene Verhalten zu lenken oder im Sinne eines Hedonic Framing die Wahrnehmung so zu beeinflussen, dass die eigene Zufriedenheit gesteigert wird..In diesem Kapitel werden für diese Anwendungsfelder jeweils Beispiele präsentiert, wie aus d
发表于 2025-3-24 04:02:51 | 显示全部楼层
发表于 2025-3-24 08:02:06 | 显示全部楼层
发表于 2025-3-24 12:45:51 | 显示全部楼层
发表于 2025-3-24 15:05:41 | 显示全部楼层
Long Range Wide Area Network (LoRaWAN) for Oil Palm Soil Monitoring,he template for LoRaWAN network is laid out in four parts; sensor node, gateway, network server, and application server. LoRaWAN is perfect for outlying regions without cellular network coverage or for establishing private networks covering long distances with minimum power consumption and maintenan
发表于 2025-3-24 22:30:54 | 显示全部楼层
Artificial Intelligence in Agriculture: Commitment to Establish Society 5.0: An Analytical Conceptsge and its consequences over crops is demanding innovative solutions to keep on increasing yield while mitigating the adverse effects on the ecosystem. The aim of this chapter is to provide an analytical concept mapping and framework about AI-based learning systems, in a quasi-philosophical way to e
发表于 2025-3-24 23:09:14 | 显示全部楼层
Potentials of Deep Learning Frameworks for Tree Trunk Detection in Orchard to Enable Autonomous Nav (7–8 PM) conditions in August and September (summertime) in Japan. Thermal imagery datasets were augmented to train, validate, and test using the faster R-CNN, YOLO-v3, and CenterNet deep learning model to detect a tree trunk. A total of 12,876 images were used to train the model, 9270 images were
发表于 2025-3-25 04:27:49 | 显示全部楼层
Real-Time Pear Fruit Detection and Counting Using YOLOv4 Models and Deep SORT,e unique ID method was found to be more reliable, with an F1. of 87.85%. This was because YOLOv4 had a very low false negative in detecting pear fruits. The ROI line is more reliable because of its more restrictive nature, but due to flickering in detection it was not able to count some pears despit
发表于 2025-3-25 08:32:23 | 显示全部楼层
Pear Recognition System in an Orchard from 3D Stereo Camera Datasets Using Deep Learning Algorithms) conditions at JST, Tokyo Time, August 2021 (summertime) to prepare training, validation, and test datasets at a ratio of 6:3:1. All the images were taken by a 3D stereo camera which included PERFORMANCE, QUALITY, and ULTRA models. We used the PERFORMANCE model to capture images to make the dataset
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 18:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表