找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to the Mori Program; Kenji Matsuki Textbook 2002 Springer Science+Business Media New York 2002 Dimension.Grad.algebra.algebra

[复制链接]
查看: 27300|回复: 54
发表于 2025-3-21 17:16:57 | 显示全部楼层 |阅读模式
书目名称Introduction to the Mori Program
编辑Kenji Matsuki
视频videohttp://file.papertrans.cn/475/474375/474375.mp4
概述The first book in this extremely important and active area of research; likely to become a key resource.Author presents the theory in an easy and understandable way with lots of background motivation.
丛书名称Universitext
图书封面Titlebook: Introduction to the Mori Program;  Kenji Matsuki Textbook 2002 Springer Science+Business Media New York 2002 Dimension.Grad.algebra.algebra
出版日期Textbook 2002
关键词Dimension; Grad; algebra; algebraic geometry; algebraic varieties
版次1
doihttps://doi.org/10.1007/978-1-4757-5602-9
isbn_softcover978-1-4419-3125-2
isbn_ebook978-1-4757-5602-9Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer Science+Business Media New York 2002
The information of publication is updating

书目名称Introduction to the Mori Program影响因子(影响力)




书目名称Introduction to the Mori Program影响因子(影响力)学科排名




书目名称Introduction to the Mori Program网络公开度




书目名称Introduction to the Mori Program网络公开度学科排名




书目名称Introduction to the Mori Program被引频次




书目名称Introduction to the Mori Program被引频次学科排名




书目名称Introduction to the Mori Program年度引用




书目名称Introduction to the Mori Program年度引用学科排名




书目名称Introduction to the Mori Program读者反馈




书目名称Introduction to the Mori Program读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:15:49 | 显示全部楼层
Flip,direction toward (existence of flip). Our hope is that this introductory book will expose the reader to the subject without too much technical difficulty and motivate him to venture into the core of the theory afterwards.
发表于 2025-3-22 04:17:13 | 显示全部楼层
发表于 2025-3-22 05:32:59 | 显示全部楼层
Base Point Freeness of Adjoint Linear Systems,orem, i.e., the Kawamata—Viehweg vanishing theorem. Our viewpoint centering on adjoint linear systems, is in the spirit of Ein—Lazarsfeld [1], which applied the . to solve Fujita’s conjecture in dimension 3.
发表于 2025-3-22 10:19:31 | 显示全部楼层
Logarithmic Mori Program,esent some of the subtleties that inevitably arise as we go from the usual category to the logarithmic category. There are some open conjectures even in dimension 3, though their statements are the natural generalizations in the logarithmic category, according to Iitaka’s philosophy, of the corresponding ones in the usual category.
发表于 2025-3-22 13:49:26 | 显示全部楼层
s development addresses the challenging endeavor to enrich human lives with the bounties of Nature as well as to preserve the planet for the generations to come. Solid Earth Geophysics aspires to define and quantify the internal structure and processes of the Earth in terms of the principles of phys
发表于 2025-3-22 18:27:26 | 显示全部楼层
发表于 2025-3-22 21:28:01 | 显示全部楼层
Kenji Matsukim many disciplines of Solid Earth Geophysics.Introduces an a.The past few decades have witnessed the growth of the Earth Sciences in the pursuit of knowledge and understanding of the planet that we live on. This development addresses the challenging endeavor to enrich human lives with the bounties o
发表于 2025-3-23 03:21:41 | 显示全部楼层
Kenji Matsukis development addresses the challenging endeavor to enrich human lives with the bounties of Nature as well as to preserve the planet for the generations to come. Solid Earth Geophysics aspires to define and quantify the internal structure and processes of the Earth in terms of the principles of phys
发表于 2025-3-23 07:46:58 | 显示全部楼层
Kenji MatsukiSouth America and all species from Brazil, but for most groups, the scope was expanded to encompass all species in South America, and, in many cases, to include terrestrial species of orders that include both terrestrial and aquatic taxa. In no case is a taxonomic reVlSlon of any group undertaken, a
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 10:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表