找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to the Mori Program; Kenji Matsuki Textbook 2002 Springer Science+Business Media New York 2002 Dimension.Grad.algebra.algebra

[复制链接]
楼主: retort
发表于 2025-3-25 06:34:51 | 显示全部楼层
发表于 2025-3-25 08:40:29 | 显示全部楼层
发表于 2025-3-25 13:33:15 | 显示全部楼层
发表于 2025-3-25 19:01:44 | 显示全部楼层
发表于 2025-3-25 22:51:03 | 显示全部楼层
Cone Theorem, the same cohomological arguments developed for the proofs of the base point freeness theorem and the non-vanishing theorem of the previous chapter. We note that our point of view for discussing the behavior of divisors following Kawamata—Reid—Shokurov—Kollar is “dual” to the original approach of Mo
发表于 2025-3-26 01:23:46 | 显示全部楼层
发表于 2025-3-26 06:33:34 | 显示全部楼层
Cone Theorem Revisited,method of .” to produce rational curves of some bounded degree (with respect to an ample divisor or to the canonical divisor). This method leads to the result of Miyaoka—Mori [1] claiming the . of Mori fiber spaces, yielding the generalization by Kawamata [13] claiming that (every irreducible compon
发表于 2025-3-26 08:55:41 | 显示全部楼层
发表于 2025-3-26 14:26:29 | 显示全部楼层
Birational Relation among Minimal Models,n dimension 2 in a fixed birational equivalence class is unique. This is no longer true in dimension 3 or higher, i.e., there may exist many minimal models in general even in a fixed birational equivalence class, and here arises a need to study the birational relation among them.
发表于 2025-3-26 17:58:44 | 显示全部楼层
Birational Relation Among Mori Fiber Spaces,i [1], which gives an algorithm for factoring a given birational map between Mori fiber spaces into a sequence of certain elementary transformations called “..” While it is a higher-dimensional analogue of the Castelnuovo—Noether theorem (cf. Theorem 1-8-8), its true meaning becomes clearer in the f
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 12:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表