找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to Algebraic Independence Theory; Yuri V. Nesterenko,Patrice Philippon Book 2001 Springer-Verlag Berlin Heidelberg 2001 Algeb

[复制链接]
楼主: amateur
发表于 2025-3-28 18:26:02 | 显示全部楼层
发表于 2025-3-28 20:38:35 | 显示全部楼层
发表于 2025-3-29 02:35:40 | 显示全部楼层
发表于 2025-3-29 03:28:30 | 显示全部楼层
Upper bounds for (geometric) Hilbert functions,ds needed for application to algebraic independence (see, for instance, Chapter 10 ) must be valid for all Vs. It is this type of bound that we here describe..In the first section of these Chapter, we give simple geometric proofs of the following upper bounds for ..
发表于 2025-3-29 09:18:01 | 显示全部楼层
Algebraic Independence in Algebraic Groups. Part 1: Small Transcendence Degrees, only a one parameter subgroup and for simplicity, we have also neglected the periods eventually contained in this subgroup. We give two statements which contain the most classical results, such as Gel’fond’s theorem.
发表于 2025-3-29 14:32:57 | 显示全部楼层
Algebraic Independence in Algebraic Groups. Part II: Large Transcendence Degrees,[Dia2], but only of a weaker statement for which the arguments may look more transparent. We shall explain how to use the transcendence criterion (chapter 8) and the zero estimate (chapter 11) together with an auxiliary function.
发表于 2025-3-29 17:09:38 | 显示全部楼层
发表于 2025-3-29 22:01:38 | 显示全部楼层
Book 2001endence of numbers and further, a detailed exposition of methods created in last the 25 years, during which commutative algebra and algebraic geometry exerted strong catalytic influence on the development of the subject.
发表于 2025-3-30 03:11:44 | 显示全部楼层
发表于 2025-3-30 04:58:29 | 显示全部楼层
,Θ(τ, ,) and Transcendence,ecall how to establish them via elliptic functions. Similarly, Section 3 describes modular and elliptic proofs of the algebraic relations which connect their . (i.e. values at CM points), and thanks to which [Nes9] becomes a statement on the exponential and the gamma functions.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-13 07:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表