找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to Algebraic Independence Theory; Yuri V. Nesterenko,Patrice Philippon Book 2001 Springer-Verlag Berlin Heidelberg 2001 Algeb

[复制链接]
查看: 48700|回复: 53
发表于 2025-3-21 17:02:04 | 显示全部楼层 |阅读模式
书目名称Introduction to Algebraic Independence Theory
编辑Yuri V. Nesterenko,Patrice Philippon
视频videohttp://file.papertrans.cn/474/473393/473393.mp4
概述The first didactically-conceived presentation of the recent development in transcendence theory.Includes supplementary material:
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Introduction to Algebraic Independence Theory;  Yuri V. Nesterenko,Patrice Philippon Book 2001 Springer-Verlag Berlin Heidelberg 2001 Algeb
描述In the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebraic independence of numbers pi and e^(pi) are most impressive results of this breakthrough. The book presents these and other results on algebraic independence of numbers and further, a detailed exposition of methods created in last the 25 years, during which commutative algebra and algebraic geometry exerted strong catalytic influence on the development of the subject.
出版日期Book 2001
关键词Algebraic independence; Dimension; algebra; algebraic geometry; algebraic group; commutative algebra; elim
版次1
doihttps://doi.org/10.1007/b76882
isbn_softcover978-3-540-41496-4
isbn_ebook978-3-540-44550-0Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 2001
The information of publication is updating

书目名称Introduction to Algebraic Independence Theory影响因子(影响力)




书目名称Introduction to Algebraic Independence Theory影响因子(影响力)学科排名




书目名称Introduction to Algebraic Independence Theory网络公开度




书目名称Introduction to Algebraic Independence Theory网络公开度学科排名




书目名称Introduction to Algebraic Independence Theory被引频次




书目名称Introduction to Algebraic Independence Theory被引频次学科排名




书目名称Introduction to Algebraic Independence Theory年度引用




书目名称Introduction to Algebraic Independence Theory年度引用学科排名




书目名称Introduction to Algebraic Independence Theory读者反馈




书目名称Introduction to Algebraic Independence Theory读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:28:07 | 显示全部楼层
发表于 2025-3-22 02:19:58 | 显示全部楼层
发表于 2025-3-22 05:24:15 | 显示全部楼层
发表于 2025-3-22 12:44:52 | 显示全部楼层
发表于 2025-3-22 15:37:34 | 显示全部楼层
Multiplicity estimates for solutions of algebraic differential equations,.) ε .[. .,⋯, . .], such that deg., . ≤., deg. . ≤. and . The upper bounds for this order of zero in terms of n and h depends on individual properties of functions . ., ⋯, . .. For example, if functions are algebraically dependent over .(.), and . is a polynomial which realise the dependence we have
发表于 2025-3-22 17:40:46 | 显示全部楼层
发表于 2025-3-22 21:36:46 | 显示全部楼层
Algebraic Independence in Algebraic Groups. Part 1: Small Transcendence Degrees,braic groups. We consider only small transcendence degrees, by which we mean results asserting the algebraic independence of at least two numbers belonging to some set of numbers typically defined as values of the exponential map of some commutative algebraic group. Even in this special case, a sing
发表于 2025-3-23 02:23:05 | 显示全部楼层
发表于 2025-3-23 09:08:04 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-13 07:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表