找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Intelligent Autonomous Systems 18; Volume 2 Proceedings Soon-Geul Lee,Jinung An,Joo H. Kim Conference proceedings 2024 The Editor(s) (if ap

[复制链接]
楼主: Awkward
发表于 2025-3-26 21:20:02 | 显示全部楼层
LTS-NET: End-to-End Unsupervised Learning of Long-Term 3D Stable Objects specifically distinguishing between static and dynamic objects. Understanding object stability is key for mobile robots since long-term stable objects can be exploited as landmarks for long-term localisation. Our pipeline includes a labelling method that utilizes historical data from the environmen
发表于 2025-3-27 04:01:12 | 显示全部楼层
EA-Repose: Efficient and Accurate Feature-Metric-Based 6D Object Pose Refinement via Deep Reinforcemthm as the solver. However, they may easily ignore the importance of the damping parameter . factor, which affects the accuracy and efficiency of prediction. In this paper, we present a coarse-to-fine feature-metric-based 6D object pose refinement framework, which utilizes the intermediate layers to
发表于 2025-3-27 05:34:04 | 显示全部楼层
发表于 2025-3-27 10:24:26 | 显示全部楼层
发表于 2025-3-27 17:03:03 | 显示全部楼层
发表于 2025-3-27 20:22:58 | 显示全部楼层
发表于 2025-3-28 00:08:24 | 显示全部楼层
Data Aggregation (DAgger) Algorithm Using Adversarial Agent Policy for Dynamic Situationsating diverse situations and does not account for improvements in the ego agent’s policy during training. To address these limitations, a method has been proposed that involves training by modeling the dynamic obstacle’s behavior as the adversarial agent policy. However, this method has been applied
发表于 2025-3-28 02:20:48 | 显示全部楼层
发表于 2025-3-28 06:52:43 | 显示全部楼层
发表于 2025-3-28 12:03:08 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 02:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表