找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Infinity Properads and Infinity Wheeled Properads; Philip Hackney,Marcy Robertson,Donald Yau Book 2015 Springer International Publishing S

[复制链接]
楼主: Jejunum
发表于 2025-3-28 16:55:55 | 显示全部楼层
0075-8434 natorics of graphs and graphs substitution.Analyses technica.The topic of this book sits at the interface of the theory of higher categories (in the guise of (∞,1)-categories) and the theory of properads. Properads are devices more general than operads and enable one to encode bialgebraic, rather th
发表于 2025-3-28 20:28:14 | 显示全部楼层
Graphse develop graph theoretical concepts that will be needed later to define coface and codegeneracy maps in the graphical categories for connected (wheeled-free) graphs. We give graph substitution characterization of each of these concepts.
发表于 2025-3-29 02:04:16 | 显示全部楼层
Wheeled Properads and Graphical Wheeled Properadsare infinite. In the rest of this chapter, we discuss wheeled versions of coface maps, codegeneracy maps, and graphical maps, which are used to define the wheeled properadic graphical category .. Every wheeled properadic graphical map has a decomposition into codegeneracy maps followed by coface maps.
发表于 2025-3-29 05:44:16 | 显示全部楼层
Introduction,ndamental properad of an .-properad is characterized in terms of homotopy classes of 1-dimensional elements. Using all connected graphs instead of connected wheel-free graphs, a parallel theory of .-wheeled properads is also developed.
发表于 2025-3-29 10:26:49 | 显示全部楼层
Properadic Graphical Categorys do not exist for general properad maps between graphical properads. Finally, we show that the properadic graphical category admits the structure of a (dualizable) generalized Reedy category, in the sense of Berger and Moerdijk (Math. Z. .(3–4), 977–1004, 2011).
发表于 2025-3-29 13:20:42 | 显示全部楼层
发表于 2025-3-29 15:34:12 | 显示全部楼层
Symmetric Monoidal Closed Structure on Properadsn of the tensor product of two free properads in terms of the two generating sets. In particular, when the free properads are finitely generated, their tensor product is finitely presented. This is not immediately obvious from the definition because free properads are often infinite sets.
发表于 2025-3-29 20:23:53 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 15:02
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表