找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Infinity Properads and Infinity Wheeled Properads; Philip Hackney,Marcy Robertson,Donald Yau Book 2015 Springer International Publishing S

[复制链接]
楼主: Jejunum
发表于 2025-3-23 12:56:07 | 显示全部楼层
发表于 2025-3-23 15:48:40 | 显示全部楼层
发表于 2025-3-23 21:26:53 | 显示全部楼层
al Science at the Karl-Franzens-University Graz..Dr. Rudolf Egger is a university professor for empirical learning environment research and university didactics at the Institute for Education and Educational Sc978-3-658-39677-0978-3-658-39678-7
发表于 2025-3-23 22:47:09 | 显示全部楼层
Philip Hackney,Marcy Robertson,Donald Yaual Science at the Karl-Franzens-University Graz..Dr. Rudolf Egger is a university professor for empirical learning environment research and university didactics at the Institute for Education and Educational Sc978-3-658-39677-0978-3-658-39678-7
发表于 2025-3-24 06:18:36 | 显示全部楼层
发表于 2025-3-24 07:07:34 | 显示全部楼层
Introduction,e graph generates a properad, giving rise to the graphical category . of properads. Using graphical analogs of coface maps and the properadic nerve functor, an .-properad is defined as an object in the graphical set category . that satisfies some inner horn extension property. Symmetric monoidal clo
发表于 2025-3-24 13:02:04 | 显示全部楼层
发表于 2025-3-24 15:10:07 | 显示全部楼层
发表于 2025-3-24 20:20:55 | 显示全部楼层
Symmetric Monoidal Closed Structure on Properadsed by Boardman and Vogt (.. Lecture Notes in Mathematics, vol. 347, Springer, Berlin, 1973). One main result of this chapter gives a simple description of the tensor product of two free properads in terms of the two generating sets. In particular, when the free properads are finitely generated, thei
发表于 2025-3-25 01:50:45 | 显示全部楼层
Graphical Properads of elements precisely when the generating graph is not simply connected. The discussion of the tensor product of free properads in Chap. . applies in particular to graphical properads. Then we illustrate with several examples that a general properad map between graphical properads may exhibit bad b
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 14:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表