找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Hypergeometric Orthogonal Polynomials and Their q-Analogues; Roelof Koekoek,Peter A. Lesky,René F. Swarttouw Book 20101st edition Springer

[复制链接]
楼主: burgeon
发表于 2025-3-26 22:09:33 | 显示全部楼层
发表于 2025-3-27 03:20:42 | 显示全部楼层
发表于 2025-3-27 06:57:39 | 显示全部楼层
Orthogonal Polynomial Solutions in ,, of ,-Difference EquationsIn the case that .=0, .>0 and .≠1 we might replace . by .. in (3.2.1) and then replace . by ... Then we have . In this case the eigenvalue problem reads (cf. (10.1.1)) . for .=0,1,2,…. This can also be written in the symmetric form . for .=0,1,2,…, with . and . The regularity condition (2.3.3) implies that .≠0.
发表于 2025-3-27 12:38:46 | 显示全部楼层
Orthogonal Polynomial Solutions in , of Complex ,-Difference EquationsIt is also possible to obtain real polynomial solutions of the (complex) .-difference equation (12.2.1) . with argument . where .∈ℝ∖{0} and .,.∈ℂ∖{0}. By using .=.+., .=.+.. with .,.,.,.∈ℝ, we find that the imaginary part of . equals . This is equal to zero for all .∈ℝ and .∈ℝ if
发表于 2025-3-27 14:42:30 | 显示全部楼层
https://doi.org/10.1007/978-3-642-05014-5Askey scheme; Eigenvalue; Hypergeometric function; basic hypergeometric functions; differential equation
发表于 2025-3-27 21:12:19 | 显示全部楼层
发表于 2025-3-28 00:28:21 | 显示全部楼层
Orthogonal Polynomial Solutions in ,,+,, of Real ,-Difference Equationsdifferent. This implies by using theorem 3.7 that there exists a sequence of dual polynomials. In this case we have . with .=0 and ..=1=... Furthermore we have by using (11.2.2) . if we choose .=−1 in (11.2.1).
发表于 2025-3-28 04:48:26 | 显示全部楼层
Definitions and Miscellaneous Formulas,s function .(.) is constant between its (countably many) jump points then we have the situation of positive weights .. on a countable subset . of ℝ. Then the system . is orthogonal on . with respect to these weights as follows:
发表于 2025-3-28 09:15:26 | 显示全部楼层
发表于 2025-3-28 10:26:14 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-5 12:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表