找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Hypergeometric Orthogonal Polynomials and Their q-Analogues; Roelof Koekoek,Peter A. Lesky,René F. Swarttouw Book 20101st edition Springer

[复制链接]
楼主: burgeon
发表于 2025-3-28 14:47:43 | 显示全部楼层
发表于 2025-3-28 19:33:39 | 显示全部楼层
Book 20101st edition. The fa- lies of orthogonal polynomials in these two schemes generalize the classical orth- onal polynomials (Jacobi, Laguerre and Hermite polynomials) and they have pr- erties similar to them. In fact, they have properties so similar that I am inclined (f- lowing Andrews & Askey [34]) to call all
发表于 2025-3-29 01:01:56 | 显示全部楼层
发表于 2025-3-29 05:52:44 | 显示全部楼层
Polynomial Solutions of Eigenvalue Problems,∈ℝ∖{−1,0}, .∈ℝ and (.,.)≠(1,0). This class of operators includes the .-derivative operator . (.=0), the difference operator Δ (.=1 and .=1) and also the differentiation operator . as a limit case (.→1 and .=0). In order to avoid the latter limiting process, we introduce the operator . in a second wa
发表于 2025-3-29 09:15:12 | 显示全部楼层
发表于 2025-3-29 15:25:27 | 显示全部楼层
发表于 2025-3-29 16:43:50 | 显示全部楼层
发表于 2025-3-29 23:27:51 | 显示全部楼层
Hypergeometric Orthogonal Polynomialsgonal polynomials we state the most important properties such as a representation as a hypergeometric function, orthogonality relation(s), the three-term recurrence relation, the second-order differential or difference equation, the forward shift (or degree lowering) and backward shift (or degree ra
发表于 2025-3-30 02:30:33 | 显示全部楼层
Orthogonal Polynomial Solutions in ,,+,, of Real ,-Difference Equations2)) . with .∈{1,2,3,…} or .→∞, where . with . where .,.,.,..,..∈ℝ, .>0, .≠1 and .≠0. If the regularity condition (11.2.4) holds all eigenvalues . are different. This implies by using theorem 3.7 that there exists a sequence of dual polynomials. In this case we have . with .=0 and ..=1=... Furthermor
发表于 2025-3-30 07:16:41 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-5 12:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表