找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Haar Series and Linear Operators; Igor Novikov,Evgenij Semenov Book 1997 Springer Science+Business Media Dordrecht 1997 DEX.Equivalence.Ma

[复制链接]
楼主: ARRAY
发表于 2025-3-26 22:34:53 | 显示全部楼层
Fourier-Haar Coefficients,In this section the operator.will be investigated. As usual, . = 2. + ., ., .∈ Ω. Denote
发表于 2025-3-27 02:46:01 | 显示全部楼层
发表于 2025-3-27 06:27:20 | 显示全部楼层
发表于 2025-3-27 10:37:57 | 显示全部楼层
Haar System Rearrangements,Let . ≥ 0 and π. be a rearrangement of {0,1} if . = 0 and {1, 2, ..., 2.} if . ≥ 1. A sequence π = {π., π. ...} generates the operator
发表于 2025-3-27 15:53:17 | 显示全部楼层
Pointwise Estimates of Multipliers,Let . be a linear operator acting in a pair of r.i. spaces. An operator .. is said to be a transposed one with respect to .. if for every measurable subsets ., . ⊂ [0,1]. A.P. Calderon proved the following theorem [52]. If . and its transposed operator .. have the weak types (1,1) and (2,2) with norms ≤ 1, then, for every . ∈ (0,1] . where
发表于 2025-3-27 18:46:46 | 显示全部楼层
Estimates of Multipliers in ,,,Here we use the notations of Chapter 12, 13. If |λ.| ≤ 1 for (.) ∈ Ω, then the corresponding multiplier Λ is of week type (1,1) and its norm is less than 2. This statement was proved in Chapter 5. This chapter is devoted to the unimprovability of the mentioned result.
发表于 2025-3-27 22:07:19 | 显示全部楼层
Subsequences of the Haar system,If the H.s. is an unconditional basis of an r.i. space ., then the spaces spanned by subsequences of the H.s. are complemented in .. These spaces can be characterized in the following form.
发表于 2025-3-28 04:07:35 | 显示全部楼层
发表于 2025-3-28 08:38:51 | 显示全部楼层
Mathematics and Its Applicationshttp://image.papertrans.cn/h/image/420358.jpg
发表于 2025-3-28 14:30:14 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 11:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表