找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Haar Series and Linear Operators; Igor Novikov,Evgenij Semenov Book 1997 Springer Science+Business Media Dordrecht 1997 DEX.Equivalence.Ma

[复制链接]
查看: 17904|回复: 61
发表于 2025-3-21 16:43:25 | 显示全部楼层 |阅读模式
书目名称Haar Series and Linear Operators
编辑Igor Novikov,Evgenij Semenov
视频video
丛书名称Mathematics and Its Applications
图书封面Titlebook: Haar Series and Linear Operators;  Igor Novikov,Evgenij Semenov Book 1997 Springer Science+Business Media Dordrecht 1997 DEX.Equivalence.Ma
描述In 1909 Alfred Haar introduced into analysis a remarkablesystem which bears his name. The Haar system is a complete orthonormalsystem on [0,1] and the Fourier-Haar series for arbitrarycontinuous function converges uniformly to this function. .This volume is devoted to the investigation of the Haar system fromthe operator theory point of view. The main subjects treated are:classical results on unconditional convergence of the Haar series inmodern presentation; Fourier-Haar coefficients;reproducibility; martingales; monotone bases in rearrangementinvariant spaces; rearrangements and multipliers with respect to theHaar system; subspaces generated by subsequences of the Haar system;the criterion of equivalence of the Haar and Franklin systems. ..Audience:. This book will be of interest to graduate students andresearchers whose work involves functional analysis and operatortheory.
出版日期Book 1997
关键词DEX; Equivalence; Martingale; Monotone; Volume; boundary element method; continuous function; convergence; f
版次1
doihttps://doi.org/10.1007/978-94-017-1726-7
isbn_softcover978-90-481-4693-2
isbn_ebook978-94-017-1726-7
copyrightSpringer Science+Business Media Dordrecht 1997
The information of publication is updating

书目名称Haar Series and Linear Operators影响因子(影响力)




书目名称Haar Series and Linear Operators影响因子(影响力)学科排名




书目名称Haar Series and Linear Operators网络公开度




书目名称Haar Series and Linear Operators网络公开度学科排名




书目名称Haar Series and Linear Operators被引频次




书目名称Haar Series and Linear Operators被引频次学科排名




书目名称Haar Series and Linear Operators年度引用




书目名称Haar Series and Linear Operators年度引用学科排名




书目名称Haar Series and Linear Operators读者反馈




书目名称Haar Series and Linear Operators读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:24:02 | 显示全部楼层
发表于 2025-3-22 00:52:46 | 显示全部楼层
https://doi.org/10.1007/978-94-010-1073-3 known (see Theorem 1.b.3) that there exists a subsequence {x.}. of {x.}. which is equivalent to a block basis of {y.}.. It is natural to say in such situations that the subsequence {x.}. is reproduced as a block basis of {y.}.. Of particular interest is the case when the above mentioned assertion i
发表于 2025-3-22 06:42:02 | 显示全部楼层
Causes of the Abuse of Illicit Drugs, to the H.s. Such operators are said to be multipliers. Recall that the norm of Λ from .. into .. (..) is denoted by ‖Λ‖.,. (‖Λ‖.). The main result of Chapter 5 (Corollary 5.8) may be formulated in the following way. If .% MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn%
发表于 2025-3-22 11:14:17 | 显示全部楼层
发表于 2025-3-22 16:58:17 | 显示全部楼层
发表于 2025-3-22 17:26:45 | 显示全部楼层
The Unconditionality of the Haar system,ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr% pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs% 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai% aabeqaamaabaabauaakeaacqaH1oqz
发表于 2025-3-23 00:19:03 | 显示全部楼层
Reproducibility of the Haar system, known (see Theorem 1.b.3) that there exists a subsequence {x.}. of {x.}. which is equivalent to a block basis of {y.}.. It is natural to say in such situations that the subsequence {x.}. is reproduced as a block basis of {y.}.. Of particular interest is the case when the above mentioned assertion i
发表于 2025-3-23 02:22:35 | 显示全部楼层
发表于 2025-3-23 07:58:18 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 18:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表