找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Haar Series and Linear Operators; Igor Novikov,Evgenij Semenov Book 1997 Springer Science+Business Media Dordrecht 1997 DEX.Equivalence.Ma

[复制链接]
楼主: ARRAY
发表于 2025-3-25 06:07:35 | 显示全部楼层
Economic Remedies to Reduce SmokingThe purpose of this chapter is to describe monotone bases in r.i. spaces. If any contractive projection P satisfying the condition .. = .. is a conditional expectation, then such description can be given in terms of generalized Haar systems. We start in section 10.a with the characterization of r.i. spaces with the above mentioned property.
发表于 2025-3-25 09:59:31 | 显示全部楼层
发表于 2025-3-25 12:36:29 | 显示全部楼层
发表于 2025-3-25 18:04:45 | 显示全部楼层
发表于 2025-3-25 22:48:10 | 显示全部楼层
The Economics of Alfred MarshallIf the H.s. is an unconditional basis of an r.i. space ., then the spaces spanned by subsequences of the H.s. are complemented in .. These spaces can be characterized in the following form.
发表于 2025-3-26 02:17:36 | 显示全部楼层
https://doi.org/10.1007/978-94-011-2950-3A.M. Olevskii investigated some orthonormal system which is closely connected with the H.s.[212].
发表于 2025-3-26 04:35:08 | 显示全部楼层
发表于 2025-3-26 12:31:28 | 显示全部楼层
Convergence of Haar Series,One of the main propeties of the H.s. is that it forms a basis in ., .. (1 ≤ . < ∞) and moreover in a separable r.i. space. Any function χ.(.) (. > 1) is discontinuous. Therefore if . ∈ .[0,1], then the convergence ... to . is meant in ...
发表于 2025-3-26 13:21:40 | 显示全部楼层
Basis Properties of the Haar System,Theorem 3.2 shows that the H.s. forms a basis in .., 1 ≤ p < ∞. This statement may be generalized.
发表于 2025-3-26 17:24:32 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 11:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表