找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
楼主: patch-test
发表于 2025-3-26 22:39:30 | 显示全部楼层
SoftCTM: Cell Detection by Soft Instance Segmentation and Consideration of Cell-Tissue Interactionll-Tissue-Model (SoftCTM) achieves 0.7172 mean F1-Score on the Overlapped Cell On Tissue (OCELOT) test set, achieving the third best overall score in the OCELOT 2023 Challenge. The source code for our approach is made publicly available at ..
发表于 2025-3-27 02:24:30 | 显示全部楼层
https://doi.org/10.1007/978-3-319-74784-2lenge dataset (the large FoV images with tissue-level annotations were not used). The submitted model achieved a F.-score of 0.673 on the evaluation set of the validation phase. The code to run our submitted trained model is available at: ..
发表于 2025-3-27 06:30:54 | 显示全部楼层
Graphs in Biomedical Image Analysis, and Overlapped Cell on Tissue Dataset for Histopathology978-3-031-55088-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-27 12:57:15 | 显示全部楼层
https://doi.org/10.1007/978-3-642-95517-4lected by deep learning methods that mostly aim for the statistical modeling of input data as pixels rather than interconnected structures. In biological structures, however, organs are not separate entities; for example, in reality, a severed vessel is an indication of an underlying problem, but tr
发表于 2025-3-27 16:44:58 | 显示全部楼层
https://doi.org/10.1007/978-981-13-1462-9 structure. This population graph can then be used for medical downstream tasks using graph neural networks (GNNs). The construction of a suitable graph structure is a challenging step in the learning pipeline that can have a severe impact on model performance. To this end, different graph assessmen
发表于 2025-3-27 20:54:55 | 显示全部楼层
发表于 2025-3-28 01:04:21 | 显示全部楼层
发表于 2025-3-28 05:11:10 | 显示全部楼层
https://doi.org/10.1007/978-4-431-66917-3ble approach for evaluating the clinical correctness of report-generation methods. However, the direct generation of radiology graphs from chest X-ray (CXR) images has not been attempted. To address this gap, we propose a novel approach called Prior-RadGraphFormer that utilizes a transformer model w
发表于 2025-3-28 08:47:57 | 显示全部楼层
发表于 2025-3-28 12:58:56 | 显示全部楼层
https://doi.org/10.1007/978-981-13-0508-5d tissues in histology images. However, the shortage of annotated data in digital pathology presents a significant challenge for training GNNs. To address this, self-supervision can be used to enable models to learn from data by capturing rich structures and relationships without requiring annotatio
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 10:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表