找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
楼主: DUMMY
发表于 2025-3-25 04:40:28 | 显示全部楼层
发表于 2025-3-25 09:58:14 | 显示全部楼层
发表于 2025-3-25 12:30:42 | 显示全部楼层
发表于 2025-3-25 19:07:30 | 显示全部楼层
发表于 2025-3-25 20:19:53 | 显示全部楼层
Bounding the Maximal Parsing Performance of Non-Terminally Separated Grammarsn achieve over a given treebank. We define a new metric, show that its optimization is NP-Hard but solvable with specialized software, and show a translation of the result to a bound for the ... We do experiments with the WSJ10 corpus, finding an .. bound of 76.1% for the UWNTS grammars over the POS tags alphabet.
发表于 2025-3-26 04:13:46 | 显示全部楼层
https://doi.org/10.1007/978-3-658-20757-1 approach that has even been extended to the much more complex structures of proteins. Processive enzymes and other “molecular machines” can also be cast in terms of automata. This paper briefly reviews linguistic approaches to molecular biology, and provides perspectives on potential future applications of grammars and automata in this field.
发表于 2025-3-26 06:40:25 | 显示全部楼层
发表于 2025-3-26 09:25:22 | 显示全部楼层
https://doi.org/10.1007/3-540-29434-1 respect to strong reducibility. We also introduce the notion of very strong reducibility and construct a complete symmetric BC-learnable class with respect to very strong reducibility. However, for EX-learnability, it is shown that there does not exist a symmetric class with respect to any weak, strong or very strong reducibility.
发表于 2025-3-26 14:07:39 | 显示全部楼层
发表于 2025-3-26 19:28:40 | 显示全部楼层
Glaube und Politik in Mecklenburggorithm. The result is the . + algorithm, which stands for .. . + is an efficient algorithm for identifying DRTAs from positive data. We show using artificial data that . + is capable of identifying sufficiently large DRTAs in order to identify real-world real-time systems.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 20:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表