找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Global Aspects of Classical Integrable Systems; Richard H. Cushman,Larry M. Bates Book 2015Latest edition Springer Basel 2015 algebra.clas

[复制链接]
楼主: deferential
发表于 2025-3-25 07:11:00 | 显示全部楼层
发表于 2025-3-25 07:38:36 | 显示全部楼层
The Lagrange topPhysically, the Lagrange top is a symmetric rigid body spinning about its figure axis whose base point is fixed. A constant vertical gravitational force acts on the center of mass of the top, which lies on its symmetry axis.
发表于 2025-3-25 11:47:01 | 显示全部楼层
Systems with SymmetryIn this chapter we discuss Hamiltonian systems with symmetry. By a symmetry of a Hamiltonian system (H, ., .) we mean a proper action of a Lie group G on a symplectic manifold (., .), which has a momentum mapping .: . → g*, and preserves the Hamiltonian ..
发表于 2025-3-25 17:11:55 | 显示全部楼层
Action-angle coordinatesHere we prove the existence of local action angle coordinates for a Liouville integrable Hamiltonian system near a compact connected fiber of its integral mapping.
发表于 2025-3-25 23:19:11 | 显示全部楼层
Richard H. Cushman,Larry M. BatesThis book gives a complete global geometric description of the motion of the two dimensional harmonic oscillator, the Kepler problem, the Euler top, the spherical pendulum and the Lagrange top.This bo
发表于 2025-3-26 01:54:44 | 显示全部楼层
发表于 2025-3-26 04:50:13 | 显示全部楼层
Geodesics on ,,verns the motion of two bodies in .. under gravitational attraction. We give two methods to regularize the flow of the Kepler vector field: one energy surface by energy surface and the other for all negative energies at once.
发表于 2025-3-26 11:52:11 | 显示全部楼层
发表于 2025-3-26 15:27:05 | 显示全部楼层
发表于 2025-3-26 19:58:58 | 显示全部楼层
Basic Morse Theoryh manifold and show that if it is nondegenerate then there are local coordinates in which the function is equal to its second derivative. We also prove the Morse isotopy lemma which gives a criterion when two suitable level sets of a smooth function are diffeomorphic. We conclude the chapter by exte
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 22:56
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表