找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Global Aspects of Classical Integrable Systems; Richard H. Cushman,Larry M. Bates Book 2015Latest edition Springer Basel 2015 algebra.clas

[复制链接]
查看: 25999|回复: 52
发表于 2025-3-21 17:27:48 | 显示全部楼层 |阅读模式
书目名称Global Aspects of Classical Integrable Systems
编辑Richard H. Cushman,Larry M. Bates
视频video
概述This book gives a complete global geometric description of the motion of the two dimensional harmonic oscillator, the Kepler problem, the Euler top, the spherical pendulum and the Lagrange top.This bo
图书封面Titlebook: Global Aspects of Classical Integrable Systems;  Richard H. Cushman,Larry M. Bates Book 2015Latest edition Springer Basel 2015 algebra.clas
描述This book gives a uniquely complete description of the geometry of the energy momentum mapping of five classical integrable systems: the 2-dimensional harmonic oscillator, the geodesic flow on the 3-sphere, the Euler top, the spherical pendulum and the Lagrange top. It presents for the first time in book form a general theory of symmetry reduction which allows one to reduce the symmetries in the spherical pendulum and the Lagrange top. Also the monodromy obstruction to the existence of global action angle coordinates is calculated for the spherical pendulum and the Lagrange top. The book addresses professional mathematicians and graduate students and can be used as a textbook on advanced classical mechanics or global analysis.
出版日期Book 2015Latest edition
关键词algebra; classical mechanics; hamiltonian mechanics; manifold; pendulum
版次2
doihttps://doi.org/10.1007/978-3-0348-0918-4
isbn_ebook978-3-0348-0918-4
copyrightSpringer Basel 2015
The information of publication is updating

书目名称Global Aspects of Classical Integrable Systems影响因子(影响力)




书目名称Global Aspects of Classical Integrable Systems影响因子(影响力)学科排名




书目名称Global Aspects of Classical Integrable Systems网络公开度




书目名称Global Aspects of Classical Integrable Systems网络公开度学科排名




书目名称Global Aspects of Classical Integrable Systems被引频次




书目名称Global Aspects of Classical Integrable Systems被引频次学科排名




书目名称Global Aspects of Classical Integrable Systems年度引用




书目名称Global Aspects of Classical Integrable Systems年度引用学科排名




书目名称Global Aspects of Classical Integrable Systems读者反馈




书目名称Global Aspects of Classical Integrable Systems读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:05:05 | 显示全部楼层
发表于 2025-3-22 02:13:28 | 显示全部楼层
发表于 2025-3-22 05:20:39 | 显示全部楼层
Basic Morse Theorye the Morse isotopy lemma which gives a criterion when two suitable level sets of a smooth function are diffeomorphic. We conclude the chapter by extending the notion of nondegenerate critical point to a nondegenerate critical submanifold.
发表于 2025-3-22 10:39:04 | 显示全部楼层
发表于 2025-3-22 13:15:44 | 显示全部楼层
Fundamental conceptsectic manifold, which is a Lie algebra under Poisson bracket, is made into an algebra using pointwise multiplication of smooth functions, we obtain a Poisson algebra. The symplectic formulation of mechanics can be recovered from this Poisson algebra.
发表于 2025-3-22 17:59:32 | 显示全部楼层
发表于 2025-3-22 23:48:56 | 显示全部楼层
发表于 2025-3-23 03:27:12 | 显示全部楼层
Human Resources, Employment and Developmentverns the motion of two bodies in .. under gravitational attraction. We give two methods to regularize the flow of the Kepler vector field: one energy surface by energy surface and the other for all negative energies at once.
发表于 2025-3-23 08:48:07 | 显示全部楼层
Context 1997–2003: History and Politicsly lifted to a horizontal curve in .. An Ehresmann connection is good if every smooth curve in . has a global horizontal lift. For good connections we define the notions of parallel translation and holonomy.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 13:17
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表