找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry of Lie Groups; Boris Rosenfeld Book 1997 Springer Science+Business Media Dordrecht 1997 Grad.algebra.associative algebra.finite g

[复制链接]
楼主: 使无罪
发表于 2025-3-23 11:54:07 | 显示全部楼层
发表于 2025-3-23 14:02:02 | 显示全部楼层
发表于 2025-3-23 21:22:31 | 显示全部楼层
978-1-4419-4769-7Springer Science+Business Media Dordrecht 1997
发表于 2025-3-23 22:55:03 | 显示全部楼层
Rechnerische Behandlung der Zeitvektoren,he skew field ℍ of quaternions, we obtain the complex linear space ℂ.. or quaternionic linear space ℍ... We have mentioned the space ℂ.. in . Since ℍ is noncommutative, in the products (0.7) of a vector a and a quaternionic scalar λ, the scalar must always be at the right of the vector.
发表于 2025-3-24 03:07:20 | 显示全部楼层
发表于 2025-3-24 08:55:02 | 显示全部楼层
发表于 2025-3-24 14:29:49 | 显示全部楼层
Einige Grundstrukturen der Algebra,lute hyperquadrics of the spaces .. or .. are given, there are spaces corresponding them by the duality principle of ... These dual spaces are called ., respectively ., . and are denoted by .., respectively ...
发表于 2025-3-24 18:11:25 | 显示全部楼层
Affine and Projective Geometries,he skew field ℍ of quaternions, we obtain the complex linear space ℂ.. or quaternionic linear space ℍ... We have mentioned the space ℂ.. in . Since ℍ is noncommutative, in the products (0.7) of a vector a and a quaternionic scalar λ, the scalar must always be at the right of the vector.
发表于 2025-3-24 22:25:41 | 显示全部楼层
发表于 2025-3-25 00:03:49 | 显示全部楼层
Elliptic, Hyperbolic, Pseudoelliptic, and Pseudohyperbolic Geometries,he classes of primitivity of these hyperspheres are pairs of their antipodal points. Therefore, if we identify pairs of antipodal points of these hyperspheres we obtain homogeneous spaces with primitive groups of transformations.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 10:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表