找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry of Lie Groups; Boris Rosenfeld Book 1997 Springer Science+Business Media Dordrecht 1997 Grad.algebra.associative algebra.finite g

[复制链接]
查看: 30318|回复: 42
发表于 2025-3-21 16:12:19 | 显示全部楼层 |阅读模式
书目名称Geometry of Lie Groups
编辑Boris Rosenfeld
视频video
丛书名称Mathematics and Its Applications
图书封面Titlebook: Geometry of Lie Groups;  Boris Rosenfeld Book 1997 Springer Science+Business Media Dordrecht 1997 Grad.algebra.associative algebra.finite g
描述This book is the result of many years of research in Non-Euclidean Geometries and Geometry of Lie groups, as well as teaching at Moscow State University (1947- 1949), Azerbaijan State University (Baku) (1950-1955), Kolomna Pedagogical Col­ lege (1955-1970), Moscow Pedagogical University (1971-1990), and Pennsylvania State University (1990-1995). My first books on Non-Euclidean Geometries and Geometry of Lie groups were written in Russian and published in Moscow: Non-Euclidean Geometries (1955) [Ro1] , Multidimensional Spaces (1966) [Ro2] , and Non-Euclidean Spaces (1969) [Ro3]. In [Ro1] I considered non-Euclidean geometries in the broad sense, as geometry of simple Lie groups, since classical non-Euclidean geometries, hyperbolic and elliptic, are geometries of simple Lie groups of classes Bn and D , and geometries of complex n and quaternionic Hermitian elliptic and hyperbolic spaces are geometries of simple Lie groups of classes An and en. [Ro1] contains an exposition of the geometry of classical real non-Euclidean spaces and their interpretations as hyperspheres with identified antipodal points in Euclidean or pseudo-Euclidean spaces, and in projective and conformal spaces. Numer
出版日期Book 1997
关键词Grad; algebra; associative algebra; finite group; lie group
版次1
doihttps://doi.org/10.1007/978-1-4757-5325-7
isbn_softcover978-1-4419-4769-7
isbn_ebook978-1-4757-5325-7
copyrightSpringer Science+Business Media Dordrecht 1997
The information of publication is updating

书目名称Geometry of Lie Groups影响因子(影响力)




书目名称Geometry of Lie Groups影响因子(影响力)学科排名




书目名称Geometry of Lie Groups网络公开度




书目名称Geometry of Lie Groups网络公开度学科排名




书目名称Geometry of Lie Groups被引频次




书目名称Geometry of Lie Groups被引频次学科排名




书目名称Geometry of Lie Groups年度引用




书目名称Geometry of Lie Groups年度引用学科排名




书目名称Geometry of Lie Groups读者反馈




书目名称Geometry of Lie Groups读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:58:29 | 显示全部楼层
发表于 2025-3-22 03:04:27 | 显示全部楼层
Euclidean, Pseudo-Euclidean, Conformal and Pseudoconformal Geometries, . = .... of this space by itself is a positive definite quadratic form .. = ......, this space is also called a .. In . we have seen that the space .. also satisfies the axioms ..1° – 3° of a metric space.
发表于 2025-3-22 05:25:43 | 显示全部楼层
发表于 2025-3-22 10:14:59 | 显示全部楼层
发表于 2025-3-22 13:07:49 | 显示全部楼层
Symplectic and Quasisymplectic Geometries,figures in the space ... In . we have also seen that, besides hyperquadrics, in .. there are cosymmetry figures of an other kind: linear complexes of lines. The space .. in which a linear complex of lines is given is said to be a . and is denoted by ... The linear complex determining this space is c
发表于 2025-3-22 19:03:59 | 显示全部楼层
发表于 2025-3-22 21:12:57 | 显示全部楼层
spaces are geometries of simple Lie groups of classes An and en. [Ro1] contains an exposition of the geometry of classical real non-Euclidean spaces and their interpretations as hyperspheres with identified antipodal points in Euclidean or pseudo-Euclidean spaces, and in projective and conformal spaces. Numer978-1-4419-4769-7978-1-4757-5325-7
发表于 2025-3-23 01:39:18 | 显示全部楼层
发表于 2025-3-23 05:56:23 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 06:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表