找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry of Holomorphic Mappings; Sergey Pinchuk,Rasul Shafikov,Alexandre Sukhov Book 2023 The Editor(s) (if applicable) and The Author(s)

[复制链接]
楼主: legerdemain
发表于 2025-3-25 05:55:38 | 显示全部楼层
Proper Holomorphic Mappings,In this chapter we extend the results of the previous chapters to proper holomorphic mappings. For this we introduce proper holomorphic correspondences—multiple-valued holomorphic maps.
发表于 2025-3-25 07:55:19 | 显示全部楼层
发表于 2025-3-25 13:00:15 | 显示全部楼层
发表于 2025-3-25 16:11:51 | 显示全部楼层
Geometry of Real Hypersurfaces: Analytic Continuation,In this chapter we discuss analytic continuation of germs of biholomorphic maps between real analytic strictly pseudoconvex hypersurfaces along paths on the source hypersurface. We also explore the connection of local equivalence of real analytic boundaries of strictly pseudoconvex domains with their global biholomorphic equivalence.
发表于 2025-3-25 21:03:38 | 显示全部楼层
发表于 2025-3-26 00:10:07 | 显示全部楼层
Holomorphic Correspondences,In this chapter we prove that if a proper holomorphic map between bounded domains in . with real analytic boundaries extends to the boundary as a proper holomorphic correspondence then it extends as a holomorphic map.
发表于 2025-3-26 04:55:13 | 显示全部楼层
Extension of Proper Holomorphic Mappings,In this chapter we prove that if a biholomorphic map between bounded domains in . with real analytic boundaries admits continuous extension to the boundary then it extends holomorphically to a neighbourhood of the closure of the source domain.
发表于 2025-3-26 10:08:15 | 显示全部楼层
Extension in ,In this chapter we prove that every biholomorphic map between bounded domains in . with real analytic boundary admits holomorphic extension to a neighbourhood of the closure of the source domain.
发表于 2025-3-26 15:55:12 | 显示全部楼层
发表于 2025-3-26 16:46:50 | 显示全部楼层
1660-8046 esults.Offers a unified treatment theory of boundary behavio.This monograph explores the problem of boundary regularity and analytic continuation of holomorphic mappings between domains in complex Euclidean spaces. Many important methods and techniques in several complex variables have been develope
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 00:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表