找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry of Holomorphic Mappings; Sergey Pinchuk,Rasul Shafikov,Alexandre Sukhov Book 2023 The Editor(s) (if applicable) and The Author(s)

[复制链接]
查看: 13556|回复: 46
发表于 2025-3-21 18:40:54 | 显示全部楼层 |阅读模式
书目名称Geometry of Holomorphic Mappings
编辑Sergey Pinchuk,Rasul Shafikov,Alexandre Sukhov
视频video
概述Emphasizes geometric methods, such as the Scaling method and the Reflection principle.Features improved and simplified proofs of important results.Offers a unified treatment theory of boundary behavio
丛书名称Frontiers in Mathematics
图书封面Titlebook: Geometry of Holomorphic Mappings;  Sergey Pinchuk,Rasul Shafikov,Alexandre Sukhov Book 2023 The Editor(s) (if applicable) and The Author(s)
描述.This monograph explores the problem of boundary regularity and analytic continuation of holomorphic mappings between domains in complex Euclidean spaces. Many important methods and techniques in several complex variables have been developed in connection with these questions, and the goal of this book is to introduce the reader to some of these approaches and to demonstrate how they can be used in the context of boundary properties of holomorphic maps. The authors present substantial results concerning holomorphic mappings in several complex variables with improved and often simplified proofs. Emphasis is placed on geometric methods, including the Kobayashi metric, the Scaling method, Segre varieties, and the Reflection principle. ..Geometry of Holomorphic Mappings. will provide a valuable resource for PhD students in complex analysis and complex geometry; it will also be of interest to researchers in these areas as a reference..
出版日期Book 2023
关键词holomorphic mappings; boundary regularity; analytic continuation; invariant metrics; Segre varieties; ref
版次1
doihttps://doi.org/10.1007/978-3-031-37149-3
isbn_softcover978-3-031-37148-6
isbn_ebook978-3-031-37149-3Series ISSN 1660-8046 Series E-ISSN 1660-8054
issn_series 1660-8046
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Geometry of Holomorphic Mappings影响因子(影响力)




书目名称Geometry of Holomorphic Mappings影响因子(影响力)学科排名




书目名称Geometry of Holomorphic Mappings网络公开度




书目名称Geometry of Holomorphic Mappings网络公开度学科排名




书目名称Geometry of Holomorphic Mappings被引频次




书目名称Geometry of Holomorphic Mappings被引频次学科排名




书目名称Geometry of Holomorphic Mappings年度引用




书目名称Geometry of Holomorphic Mappings年度引用学科排名




书目名称Geometry of Holomorphic Mappings读者反馈




书目名称Geometry of Holomorphic Mappings读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:14:30 | 显示全部楼层
发表于 2025-3-22 02:19:34 | 显示全部楼层
Geometry of Holomorphic Mappings978-3-031-37149-3Series ISSN 1660-8046 Series E-ISSN 1660-8054
发表于 2025-3-22 05:06:21 | 显示全部楼层
发表于 2025-3-22 12:29:23 | 显示全部楼层
https://doi.org/10.1007/978-3-322-98478-4In this chapter we review some standard definitions and results in complex analysis and lay out the technical framework for the core material of the book.
发表于 2025-3-22 14:20:35 | 显示全部楼层
https://doi.org/10.1007/978-3-662-36815-2In this chapter we present some classical results in several complex variables that relate boundary smoothness of domains with the geometric properties of holomorphic maps between these domains.
发表于 2025-3-22 17:33:38 | 显示全部楼层
发表于 2025-3-22 22:23:12 | 显示全部楼层
https://doi.org/10.1007/978-3-8351-9226-3In this chapter we prove, using the scaling method, smooth extension to the boundary of biholomorphic maps between strictly pseudoconvex domains
发表于 2025-3-23 05:00:09 | 显示全部楼层
发表于 2025-3-23 08:59:57 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 22:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表