找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry of Foliations; Philippe Tondeur Book 1997 Springer Basel AG 1997 Finite.Mean curvature.Riemannian geometry.curvature.differential

[复制链接]
楼主: necrosis
发表于 2025-3-25 03:54:46 | 显示全部楼层
发表于 2025-3-25 08:14:43 | 显示全部楼层
https://doi.org/10.1007/978-3-322-93587-8 observations. The first is that the canonical lift.of a Riemannian foliation . to the bundle. of orthonormal frames of .is a transversally parallelizable Riemannian foliation. The canonical lift. on.is a foliation of the same dimension as . on ., and invariant under the action of the orthogonal str
发表于 2025-3-25 14:07:17 | 显示全部楼层
https://doi.org/10.1007/978-3-322-93585-4y. A good example is provided by gauge theory, where the space of connections on a bundle . is foliated by the orbits of the gauge group . of the bundle. The .-metric on the space . of connections is invariant under the action of the gauge group . Thus . has many aspects of a Riemannian foliation.
发表于 2025-3-25 17:49:54 | 显示全部楼层
发表于 2025-3-25 22:41:02 | 显示全部楼层
发表于 2025-3-26 00:58:06 | 显示全部楼层
https://doi.org/10.1007/978-3-322-93585-4y. A good example is provided by gauge theory, where the space of connections on a bundle . is foliated by the orbits of the gauge group . of the bundle. The .-metric on the space . of connections is invariant under the action of the gauge group . Thus . has many aspects of a Riemannian foliation.
发表于 2025-3-26 07:43:58 | 显示全部楼层
发表于 2025-3-26 11:50:05 | 显示全部楼层
Cohomology Vanishing and Tautness,d on the positivity of certain curvature expressions. The Weitzenböck formula for the transversal Laplacian Δ. has, aside from the usual terms, correction terms involving the mean curvature, which interfere with the usual arguments leading to vanishing theorems.
发表于 2025-3-26 12:45:54 | 显示全部楼层
发表于 2025-3-26 16:59:40 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-22 19:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表